
Design and Implementation of Rule-Based Framework for
Context-Aware Services with Web Services

Hiroki Takatsuka, Sachio Saiki, Shinsuke Matsumoto, Masahide Nakamura
Graduate School of System Informatics, Kobe University

tktk@ws.cs.kobe-u.ac.jp, sachio@carp.kobe-u.ac.jp, shinsuke@cs.kobe-u.ac.jp,
masa-n@cs.kobe-u.ac.jp

ABSTRACT
Modern cloud services and machine-to-machine (M2M) sys-
tems provide various kinds of data via various Web services.
Implementing context-aware services integrating such global
data are promising in various applications. However, it has
been challenging to manage heterogeneous contexts and ser-
vices defined in various Web services. To cope with this,
we design a framework, called RuCAS, which systematically
manages every context-aware service in form of ECA (Event-
Condition-Action) rule. We also develop RuCAS platform,
which publishes API of RuCAS as Web service. Using the
RuCAS platform, users can define their own contexts with
various Web services (e.g., information service, sensor ser-
vices, networked appliances, etc.). Based on the defined con-
texts, they can create ECA rules to define custom context-
aware services. To support users, We also implement a
GUI front-end of RuCAS platform, called RuCAS.me. Ru-
CAS.me supports users even if the users are non-expert. A
case study in a real home network system demonstrates prac-
tical feasibility of RuCAS platform and RuCAS.me. The
contribution of this paper is to provide design and implemen-
tation details of RuCAS, by which one can fully understand
systematic management of context-aware services with Web
services.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
C.0 [General]: System architectures; C.3 [Special-Purpose
and Application-Based Systems]: Real-time and em-
bedded systems

General Terms
Design

Keywords
Web services, context-awareness, event-condition-action rule,
home network system, sensor services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2014, 4-6 December, 2014, Hanoi, Vietnam.
Copyright 2014 ACM 978-1-4503-3001-5/14/12 ...$15.00.

1. INTRODUCTION
The recent spread of cloud computing [17] and Machine-

to-Machine (M2M) technologies [19] allows us to acquire
various kinds of data from heterogeneous and distributed
systems. The cloud computing provides computational re-
source and data as networked services, whereas the M2M
enables devices to communicate with each other without hu-
man intervention. Typical data include temperature, power
consumption, weather, system state, operation of a device.
Data from the cloud or M2M systems can be often obtained
through Web services or Web-API. Variety of data achieves
context-aware services [6]. A context-aware service recog-
nizes a real-world context and performs an appropriate ac-
tion based on the context. Traditionally, the context-aware
services had been studied in the field of ubiquitous/pervasive
computing [5] [20]. Many studies were reported on context
acquisition, context reasoning and utilization, using ubiqui-
tous sensors deployed on local smart space.

Now in the era of cloud and M2M, the context-aware ser-
vices must evolve so that the services can deal with global
contexts, which are defined by integrating data from the var-
ious Web services (e.g., information services, sensor services,
networked appliances, etc.). However, how to manage vari-
ous Web services for creating context-aware services is still
an open issue. Although there exist relevant studies or ser-
vices (discussed in Section 7.2), a major challenge lies in
managing complex relations among distributed data sources,
defined contexts, and actions caused by the contexts. Unless
managed systematically, the service provision would be quite
difficult. Therefore, it is essential to have a unified frame-
work for managing advanced context-aware services based
on the heterogeneous and various Web services.

To cope with the challenge, we design a framework called
RuCAS (Rule-based management framework for Context-Aware
Services). The RuCAS framework pulls data from the ex-
isting Web services, and defines custom contexts based on
the data. It also defines actions that executes assigned Web
services. Using the custom contexts and actions, RuCAS
describes ECA (Event-Condition-Action) rule. For this, the
event defines a context that triggers a service. The con-
dition refers to a guard condition to execute the service.
The action defines Web services executed by the service.
Thus, every context-aware service is simply managed as a
uniformed rule. RuCAS consists of five layers: Web service
layer, adapter layer, context layer, action layer and ECA
rule layer. The Web service layer refers to the existing Web
services as a source of data and actions. The data acqui-
sition from heterogeneous Web services is adapted to the

standard API in the adapter layer. In the context layer,
every context is defined as an expression over the data ob-
tained via the adapter. Every Web service that is triggered
by a context is managed in the action layer. Finally, the
ECA rule layer constructs ECA rules binding the custom
contexts and actions. We also develop a service platform,
called RuCAS platform, which provides API of RuCAS as
Web service. Using the RuCAS platform, various client ap-
plications can define their own contexts and context-aware
services using various Web services.

In addition, to support even non-expert users who are un-
familiar with Web services programming, we also implement
a GUI front-end of RuCAS platform, called RuCAS.me.
Based on an intuitive user interface, a user can easily cre-
ate and manage adapters, contexts, actions, and ECA rules
within the RuCAS platform. The use of RuCAS.me signifi-
cantly reduces the effort of service creation.

In order to evaluate the practical feasibility, we conduct
a case study using the RuCAS platform and RuCAS.me.
Within an actual home network system, we implement a sus-
tainable air-conditioning service. It controls an air-conditioner
and a fan based on contexts defined over room temperature,
humidity and regional energy consumption. It is demon-
strated that the service can be implemented efficiently using
RuCAS.me.

The original concept of RuCAS was published in [16], and
discussion in the context of self-management system was
submitted to a workshop paper [15]. Changes were made
on this full-conference paper, most significantly the addi-
tion of design and implementation details (in Sections 4 and
5), and elaborate discussion (in Section 7). We believe that
those changes will help practitioners to fully understand the
systematic management of context-aware services with Web
services, and to develop similar systems, efficiently.

2. PRELIMINARIES

2.1 Context-Aware Service
A context refers to a situational information (e.g., human

activity, environment, etc.) derived from information of sen-
sors and systems. A context-aware service is a service that
automatically detects a change of contexts and performs ap-
propriate actions corresponding to the context change. For
instance, a context “Hot” can be derived from information
that “the value of a temperature sensor in a room is higher
than 28 degrees”. An example of context-aware service, say
“Automatic Air-conditioning”, turns on an air-conditioner
when the context “Hot” holds.

Traditionally, the context-aware services had been stud-
ied extensively in ubiquitous/pervasive computing. Con-
texts were generally defined using situational sensors in a
smart space [20] or hand-held devices (e.g., smartphone) [5].
However, the recent advancement of cloud computing [17]
and M2M technologies [19] dramatically extends the scope
of context-aware services. The cloud computing enables to
share data and resources as services in the Web. The M2M
allows various devices to communicate with each other with-
out human intervention. Supported by big-data processing,
the combination of the cloud and the M2M is promising to
gather real-world contexts from the entire globe. Thus, the
context-aware services can evolve to sense global contexts.

To facilitate data sharing and resource integration, mod-
ern systems and devices often exhibit Web services (i.e.,

Motion Sensor

Device

read

normalize spec.

Motion Sensor

Service

getValue()

608

true

Client Application

Temperature Sensor

Device

read

normalize spec.

Temperature Sensor

Service

getValue()

402

28C

Service

Layer

Device

Layer

28C true

Figure 1: Obtaining sensor values by standard in-
terface of SSF

Web-API) that publish internal data and operations. This
paper focuses on such modern systems, and considers how
to create and manage context-aware services with such Web
services.

2.2 Home Network System (HNS)
Home Network System (HNS) is a system that provides

value added services by connecting household appliances and
equipment with the home network [7] [11]. In the HNS, ap-
pliances (e.g., TVs, lights, air-conditioners, curtains, fans,
etc.) and sensors (e.g., temperature, humidity, illuminance,
etc.) are integrated to implement various services and ap-
plications.

In our laboratory, we have been developing an actual HNS
environment, called CS27-HNS [11]. CS27-HNS extensively
exploits the concept of Service Oriented Architecture (SOA)
in order to integrate heterogeneous devices and sensors. We
encapsulated vendor-specific operations and communication
protocols within Web services. Every device can be operated
by Web-API by SOAP or REST protocol. For instance, to
change a channel of a TV to 6, a client just accesses a URL
http://hns/TVService/setChannel?channel=6.

2.3 Sensor Service Framework [10]
We have previously considered Web services to implement

context-aware services in CS27-HNS. Sensor Service Frame-
work (SSF) [10] is an application framework that easily de-
ploys environmental sensors (e.g., temperature sensor, illu-
minance sensor, etc.) as Web services. In SSF, every sensor
service has a property representing a standard sensor mea-
sure. For instance, a temperature sensor service has tem-

perature property in a degree Celsius. A client can obtain
the value of a property by getValue() method, as shown in
Figure 1.

Moreover, every sensor service observes the value of the
property, and reasons a context based on an expression (con-
text expression). The registration of the expression is con-
ducted by register() method. For instance, suppose that
a client registers a context Hot: temperature ≥ 28. The
registered context can be bound with an arbitrary Web ser-
vices by subscribe() method. The sensor service invokes

Client Application

Temperature Sensor
Device

read

normalize spec.

Temperature Sensor
Service

subscribe()

402

28C

register()

Registered Contexts

context: condition

“Cold”: temperature < 5
“Hot” : temperature>=28
:

Context DB

1. Register “Hot” as
temp. >= 28

2. Tell me
when “Hot”.

notify()

3. “Hot” is
true.

Figure 2: Implementing context-aware service with
SSF

the Web service method when the context is satisfied. Fig-
ure 2 shows a scenario where a client registers and subscribes
a context Hot.

Sensor Mashup Platform (SMuP) [10] constructs advanced
sensor services by integrating multiple sensor services. Sen-
sor Service Binder [9] provides the easy creation of context-
aware services with SSF for end users.

The above previous methods extensively focused on imple-
menting sensor as a service. Thus, using the existing Web
services for context-aware services was beyond their scope.

2.4 Challenge in Context-Aware Services with
Web Services

In the previous methods of context-aware services, every
context is tightly coupled with its data source and actions to
be invoked, which lacks flexibility and reusability. In many
cases, all operations of obtaining data from sensors, evalu-
ating defined contexts and invoking actions are performed
within a proprietary program. Hence, it is impossible to
reuse a context for another service, or to replace an action
with another. For instance, in SSF, a context Hot is man-
aged within a temperature sensor service. However, it is
not obvious for all clients where the context exists and what
happens when Hot becomes true.

As mentioned in Section 2.1, we aim to implement context-
aware services using Web services, not limited to the con-
ventional sensors. We need to find a way to systematically
manage individual Web service, contexts, and context-aware
services, in a loose-coupling manner.

3. RUCAS: RULE-BASED FRAMEWORK FOR
CONTEXT-AWARE SERVICES

To cope with the challenge, we propose a concept of Ru-
CAS (Rule-based management framework for Context-Aware
Services), which creates and manages context-aware services
based on various Web services.

RuCAS aims to help client applications to acquire infor-
mation from heterogeneous and various Web services, and

Do nothing

Event

when

false → true

ECARule

Condition Action

then
false

then
true

Figure 3: Semantics of ECA rule

to define and manage contexts based on the information. In
addition, RuCAS defines every context-aware service as an
ECA (Event-Condition-Action) rule, where the event is a
satisfaction of a context triggering the service, the condition
is a guard condition enabling the service, and the action is
Web services to be executed.

The ECA rule is an important design principle of RuCAS,
which defines every context-aware service as a set of [Event,
Condition, Action]. In general, a context-aware service can
be described by a rule that“when a context becomes true, do
something”. Intuitively, the part “when a context becomes
true” corresponds to the event, whereas “do something” cor-
responds to the action in RuCAS. However, the above rule
lacks flexibility, since the action always fires when the con-
text becomes true. Therefore, we extend the rule a bit such
that “when a context becomes true, if a condition is satis-
fied, do something”. The part “if a condition is satisfied”
corresponds to the condition in RuCAS.

We defined a context, an event, a condition and an action
as follows.

• A context is a situational information defined by a log-
ical expression over data obtained from a Web service.
Depending on the value of the data, every context is
evaluated to true or false. A context can be also de-
fined by a composition of the existing contexts.

• An event is a context triggering the execution of a
context-aware service.

• A condition is a guard condition enabling the execution
of a context-aware service. A condition is defined by
one or more contexts.

• An action is operations executed by a context-aware
service. An action is defined by one or more Web ser-
vices.

Then, an ECA rule was defined as follows:

• ECA Rule: Let c1, c2, ... be contexts, and let a1, a2, ...
be invocations of Web services. An ECA rule r is
defined by r = [E : ci, C : {cj1 , cj2 , ..., cjm}, A :
{ak1 , ak2 , ..., akn}], where E is an event, C is a condi-
tion, A is an action. For r, we say “event E occurs” if
the value of context ci moves from false to true. When
E occurs, if all contexts cj1 , cj2 , ..., cjm are satisfied,
we say “r is executed”. When r is executed, all Web
services ak1 , ak2 , ..., akn are invoked.

Figure 3 shows semantics of the ECA rule. An event is
defined by a single context, and occurs when the context
moves from false to true. A condition defines a guard evalu-
ated when the event occurs. If the condition is not satisfied,
no action is performed. If satisfied, the action is executed to
invoke Web services. For instance, a context-aware service
“when it is hot, if a user is present in a room, turn on an
air-conditioner” can be described by an ECA rule: [E : Hot,
C : {PresentUser}, A : {AirCon.on}]. Thus, the ECA
rules give an intuitive but systematic foundation to define
context-aware services.

4. DESIGN AND IMPLEMENTATION OF
RUCAS AS SERVICE PLATFORM

We then design and implement RuCAS as a service plat-
form, with which various clients can manage their own con-
texts and services via a network. The implementation is
deployed as a cloud service, which we call RuCAS platform.

4.1 System Architecture
Figure 4 shows the architecture of the RuCAS platform.

In order to efficiently build ECA rules from existing ele-
ments, the platform consists of five layers: Web service layer,
adapter layer, context layer, action layer and ECA rule layer.
Each layer creates and manages elements using features of
an underlying layer. In the ECA rule layer at the top, Ru-
CAS defines every context-aware service as an ECA rule, by
combining existing elements created in underlying layers.
Features of each layer are described below.

4.1.1 Web Service Layer
The Web service layer manages the existing Web services

used as input or output of context-aware services. The in-
put Web service is a Web service that can return a certain
value (e.g., numeric, Boolean, string, etc.) for defining a
context. Typical examples include the conventional sensor
services, the status of a device, dynamic Web information
(e.g., weather, stock price, exchange rate, etc.), SNS, clock,
system logs. The output Web service is a Web service that
can yield an action. Examples include an operation of home
network system (e.g., switch on/off, voice announce, etc.)
and a request to an information system or service (e.g., send
an email, post a comment to SNS, etc.).

4.1.2 Adapter Layer
To obtain data from a Web service, a client needs to in-

voke Web-API and extract the necessary data by parsing
the return value. However, Web-API and the return value
vary from a Web service to another. Therefore, the adapter
layer creates an adapter that normalizes the heterogeneous
interface. Specifically, every Web-API used to obtain data
is adapted to uniform API getValue().

For example, we can create an adapter TempAdapter, by
using a temperature sensor Web service, say http://hns/Tem

peratureSensorService/getTemperature. Within RuCAS,
TempAdapter.getValue() returns a temperature by inter-
nally invoking the Web service.

4.1.3 Context Layer
The context layer manages all contexts defined by data

from Web services via the adapter layer. In this layer, every
context is defined by context ID and context expression. The

Adapter
Temperature

AdapterLayer

エアコンON

Adapter
PowerUsage

Event Condition Action

Context

Hot
Context

PowerStable

Action
CoolingOn

ContextLayer

ECARuleLayer

ActionLayer

Context
Hot

Context
PowerStable Action

CoolingOn

Action
Tweet

WebServiceLayer Service

API

Service

API

Service

API

Service

API

Figure 4: Architecture of RuCAS platform

context ID is a label to identify every context. The context
expression is a logical formula, in form of Adapter.value

comp_op const, where comp_op is a comparative operator
and const is a constant value. For example, to define Hot

context to be “the temperature is equal to or more than 28
degrees”, RuCAS describes it by [Hot: TempAdapter.value

>= 28]. Similarly, to define Humid to be “the humidity is
equal to or more than 70 percent”, RuCAS describes it by
[Humid: HumidAdapter.value >= 70]. Each context can
be associated with a refresh interval, by which RuCAS pe-
riodically evaluates the context expression. For example,
when the refresh interval of Hot is one minute, RuCAS ob-
tains a new value from TempAdapter and evaluates the truth
value of Hot every minute.

RuCAS can define two types of contexts: atomic and com-
pound. The atomic context is a context directly defined by
a single Web service. The compound context is a context
defined by the existing contexts combined with logical opera-
tors (!: NOT, &&: AND, ||: OR). For example, a compound
context Muggy can be defined by combining Hot and Humid

such that [Muggy: Hot && Humid].

4.1.4 Action Layer
The action layer manages all actions used in ECA rules.

Every action wraps an output Web service of a context-
aware service, and is defined by an endpoint, a method
name, and parameters of the Web service. Each action
is associated with action ID, by which RuCAS invoke the
Web service as an action. For example, we can create an
action CoolingOn, by using an air-conditioner Web service,
say http://hns/AirConService/on?mode=cooling. When
RuCAS invokes CoolingOn, the Web service is executed to
turn on an air-conditioner with a cooling mode.

4.1.5 ECA Rule Layer
The ECA rule layer defines a context-aware service as an

ECA rule by using contexts in the context layers and actions
in the action layer. An ECA rule can be created as follows:

1. Define an event by choosing a single context from the
context layer.

2. Define a condition by choosing one or more contexts
from the context layer.

3. Define an action by choosing one or more actions from
the action layer.

The created ECA rule is evaluated and executed by RuCAS,
based on the semantics defined in Section 3.

4.2 Detailed Design
Based on the architecture, we conduct object-oriented de-

sign of the RuCAS platform. Figure 5 shows a class diagram.
This section describes the detail of each class.

4.2.1 Adapter
Adapter class implements an adapter of RuCAS. As men-

tioned in Section 4.1.2, it has getValue() method that in-
ternally obtains a return value from an external Web service.
Properties endpoint and method are used to invoke the Web
service. If the return value is structured data with multiple
attributes, property specifies an attribute to be extracted
from the structure. The followings summarize primary prop-
erties and methods.

adapterid: identifier of the adapter.

endpoint: URL endpoint of a Web service.

method: Web-API name of the Web service.

property: an attribute to be extracted from a structured
return value of the web service.

getValue(): returns a value of the property obtained from
the Web service.

4.2.2 Context
Context class implements a context of RuCAS. As men-

tioned in Section 4.1.3, there are two types of contexts:
atomic and compound. Context is an abstract class and
is implemented by either AtomicContext or CompoundCon-

text. Method run() is executed every interval msec to
refresh the context. The run() method internally executes
resolve() to obtain the latest values of variables and assign
the values to the context expression (expression). Then, it
executes eval() to evaluate the context expression. The re-
sultant value (true or false) is stored in present, until the
next execution of run(). When the value of present changes
from false to true, an event defined by this context occurs.
The event is notified to all the relevant ECA rules by noti-

fyECA(). The followings summarize primary properties and
methods.

contextid: identifier of the context.

type: type of context: atomic (A) or compound (C).

expression: a context expression of this context.

interval: refresh interval (in msec).

ecaarray: pointers to ECA rules, whose events are defined
by this context.

present: present value of the context (true or false).

eval(): evaluate the expression.

run(): refresh variables the context value.

4.2.3 AtomicContext
AtomicContext class implements the atomic context of

RuCAS. It has an adapter to obtain data from an exter-
nal Web service. In resolve() method, the context invokes
getValue() of the adapter and assigns the obtained value
into a variable in the context expression (a part of the string
value, see Section 4.1.3). The followings summarize primary
properties and methods.

adapter: an adapter to obtain data from Web service.

resolve(): assign a value from the adapter to the context
expression.

4.2.4 CompoundContext
CompoundContext class implements the compound context

of RuCAS. It contains multiple child contexts, which are
stored in children property. In resolve() method, each
child context of children recursively executes resolve()

to obtain truth value of the child context. The followings
summarize primary properties and methods.

children: array of child contexts contained in the context
expression.

resolve(): assign values obtained from the child contexts
in variables in the context expression.

4.2.5 Action
Action class implements the action of RuCAS. As men-

tioned in Section 4.1.4, it has a url that contains an end-
point, a method and an argument of a Web service to be
invoked. The followings summarize primary properties and
methods.

actionid: identifier of the action.

url: URL endpoint of a Web service.

invokeUrl(): invoke the Web service.

4.2.6 ECA
ECA class implements the ECA rule of RuCAS. Every ECA

rule is executed based on the semantics defines in Section
3. When a context assigned as an event of an ECA rule
moves from false to true, the context invokes notifyECA()

of the rule to tell that the event occurs. In notifyECA()

method, the ECA rule evaluates condition based on the
current value of the contexts. If condition is true, the rule
executes invokeUrl() to invoke Web services specified in
action. The followings summarize primary properties and
methods.

ecaid: identifier of the ECA rule.

event: event of the ECA rule (defined by a context).

condition: condition of the ECA rule (defined by multiple
contexts).

action: a set of action of the ECA rule.

notifyECA(): triggers the ECA rule when an event occurs.

- adaptermap : HashMap<String, Adapter>

- contextmap : HashMap<String, Context>

- actionmap : HashMap<String, Action>

- ecamap : HashMap<String, ECA>

RuCASManager

+ RuCASManager ()

+ start ()

+ stop ()

+ registerAdapter ()

+ registerContext ()

+ registerAction ()

+ registerECA ()

+ unregisterAdapter ()

+ unregisterContext ()

+ unregisterAction ()

+ unregisterECA ()

+ getOneAdapter ()

+ getOneContext ()

+ getOneAction ()

+ getOneECA ()

+ getAllAdapter ()

+ getAllContext ()

+ getAllAction ()

+ getAllECA ()

+ editAdapter ()

+ editContext ()

+ editAction ()

+ editECA ()

+ notifyContext ()

- contextid : String

- type : String

- label : String

- description : String

- expression : String

- interval : int

- ecaarray : ECA[]

- present : boolean

Context

+ Context ()

+ resolve ()

+ eval ()

+ run ()

+ update ()

+ addECA ()

+ deleteECA ()

+ timerTaskStart ()

+ timerTaskStop ()

- adapter : Adapter

- property : String

AtomicContext

+ AtomicContext ()

+ resolve ()

+ update ()

- children : Context[]

CompoundContext

+ CompoundContext ()

+ resolve ()

+ update ()

- adapterid : String

- description : String

- unit : String

- endpoint : String

- method : String

- property : String[]

Adapter

+ Adapter ()

+ getValue ()

+ getAllValue ()

+ readXml ()

+ update ()

- actionid:String

- url:String

- descriprion : String

Action

+ Action ()

+ update ()

+ invokeUrl ()

- ecaid : String

- event : Context

- condition : Context[]

- action : Action[]

- description : String

- randomvalue : int

ECA

+ ECA ()

+ notifyECA ()

+ addAction ()

+ deleteAction ()

+ update ()

1

1

1

*

*

*

*

RuCAS Platform

*

Figure 5: Class diagram of RuCAS platform

4.2.7 RuCASManager
RuCASManager class works as a façade of all the above

classes. It provides a service interface of the RuCAS plat-
form. The method includes CRUD operations (register, get,
edit and unregister) for Adapter, Context, Action and ECA.
It can also start and stop the evaluation process of contexts.
The method notifyContext() updates a designed context
to be true. Using the method, the context can be updated
based on publish/subscribed message pattern, instead of the
periodical polling.

In the following, we explain method that register new ob-
jects within the RuCAS platform.

registerAdapter(adapterid,endpoint,method,property):

creates a new adapter with adapter ID, endpoint, method
and property of a Web service.

registerContext(contextid,type,expression,interval,

adapterid): creates a new context with context ID,
type to specify atomic (A) or compound (C), context
expression, refresh interval (in msec), and adapter ID
used to obtain data.

registerAction(actionid,url): creates a new action with
action ID and URL of a Web service.

registerECA(ecaid,event,condition,action): creates a
new ECA rule with ECA rule ID, event given by a
context ID, condition given by a set of context IDs,
action given by a set of action IDs.

RuCASManager is deployed as Web service so that various
client applications can use RuCAS in a platform-independent
manner. Thus, every method of RuCASManager is published
as Web-API, executed by Web service protocol (SOAP or
REST). For example, to create TempAdapter in Section 4.1.2,
a client invokes Web-API in the following URL form:

http://RuCAS/registerAdapter?adapterid=TempAdapter&

endpoint=http://hns/TemperatureSensorService&method

=getTemperature&property=return

Using the RuCAS platform, a client application creates a
context-aware service by the following four steps:
Step 1 (Creating adapters): Define adapters by register

Adapter() with interesting Web services.
Step 2 (Creating contexts): Using the adapters, define
necessary contexts by registerContext().
Step 3 (Creating actions): Define actions by register

Action() with Web services to be executed.
Step 4 (Creating ECA rule): Define an ECA rule by
registerECA() with the created contexts and actions.

4.3 Implementation
Based on the detailed design, we have implemented the

RuCAS platform. For data persistence, we store them in
MongoDB. The total system comprised of around 4000 lines
of code, and the development effort was three man-months.
Technologies used for the implementation are as follows:
Language: Java 1.7.0 21, Database: MongoDB 2.4.3, Web
server: Apache Tomcat 7.0.39, Web service engine: Apache
Axis2 1.6.2.

(a) Index Page

(b) Adapter Creation

(c) Context Creation

(d) Action Creation (e) ECA Rule Creation

Figure 6: Screenshots of RuCAS.me

5. RUCAS.ME: GUI FRONT-END OF RUCAS

5.1 RuCAS.me
The RuCAS platform provides Web-API for client appli-

cations that want to manage custom context-aware services
based on RuCAS. However, the Web-API is basically used
from applications without human intervention. Thus, the
human interface is beyond the scope of the platform.

In order to support users, we have developed a Web appli-
cation RuCAS.me, which is a GUI front-end of the RuCAS
platform. Figure 6 shows screenshots of RuCAS.me. Using
these screens, users can easily create, edit and delete his/her
own RuCAS elements (adapter, context, action, ECA rule)
with simple operations on a Web browser.

RuCAS.me was implemented using the following tech-
nologies: Language: JavaScript, HTML5, JavaScript Li-
brary: jQuery 2.0.3, CSS framework: TwitterBootstrap
v3.0.3, bootmetro, Tested Browser: Google Chrome 33.0.

5.2 Playing with RuCAS.me
Using Figure 6, we explain how to work with RuCAS.me.

Figure 6 (a) shows the index page of RuCAS.me, consisting
of four buttons to manage the four RuCAS elements. To

support users, some elements are already installed as exam-
ples. Combining these preset elements, a user can quickly
learn how to create custom context-aware services.

Figure 6 (b) shows an adapter creation page. By filling the
form and pressing the apply button, a new adapter is created
within the RuCAS platform. Parameters of the form are the
ones explained in Section 4.2.1. A created adapter is enu-
merated in an adapter list page (not shown here due to lim-
ited space), where a user can manage the existing adapters.

Figure 6 (c) shows a context creation page. By filling
the form and pressing the apply button, a new context is
created within the RuCAS platform. Parameters of the form
are the ones explained in Section 4.2.2. For the purpose
of testing, a user can force any context to be true by the
notify button. A created context is enumerated in a context
list page (see Figure 7 (a)), where a user can manage the
existing contexts. As shown in the figure, a context that
currently holds appears as a checked box. This helps a user
understand the current situation.

Figure 6 (d) shows an action creation page. By filling
the form and pressing the apply button, a new action is
created within the RuCAS platform. Parameters of the form
are the ones explained in Section 4.2.5. Pressing the play

button executes the action for testing. A created action
is enumerated in an action list page (not shown here due to
limited space), where a user can manage the existing actions.

Figure 6 (e) shows an ECA rule creation page. The list
in the left side of the page enumerates contexts and actions
that are already registered in the platform. From the list,
a user just selects a preferred context for an event, one or
more contexts for a condition, one or more actions. The
selected elements appear in the rule pane (in the right side),
in form of ECA rule. In the rule pane, clicking an element
detaches the element from the ECA rule. In this figure,
a user creates an ECA rule to implement a context-aware
service FanService: “when the room is hot, if the room is
humid, turn on the fan”. A created ECA rule is enumerated
in a ECA list page (see Figure 7 (b)), where a user can
manage the existing rules.

6. CASE STUDY

6.1 Sustainable Air-Conditioning Service
To illustrate the practical feasibility of the proposed method,

we create an actual practical context-aware service within
CS27-HNS using RuCAS platform and RuCAS.me. Here
we create a sustainable air-conditioning service. This ser-
vice performs automatic air-conditioning in our laboratory
(CS27) when the lab becomes muggy. For this, if the re-
gional power demand (in Kansai area) is sufficient, turn on
an air-conditioner. However, if the demand is tight, use a
fan instead which consumes much lower energy. Thus, the
service contributes to sustainable energy usage.

To implement the service, we use the following distributed
Web services:

• Temperature/Humidity Sensor Services [10]: Web
services that obtain room temperature and humidity
of the lab deployed in CS27-HNS.

• Power Demand API [4]: External Web service that
obtains the current power demand in Kansai region,
provided by Yahoo Japan.

• Appliance Control Service [11]: Web service that
controls appliances in the lab, including the air-conditioner
and the fan.

6.2 Creating Service with RuCAS.me
Using RuCAS.me, we create the sustainable air-conditioning

service. As mentioned in Section 4.2.7, the service creation
is conducted by the four steps.

Step 1: Creating Adapters
We first create three adapters Temperature, Humidity and
PowerDemand, using the temperature/humidity sensor ser-
vices and the power demand API. Parameters for each adapter
are summarized in Table 1.

Step 2: Creating Contexts
Using the adapters, we then create five contexts Hot, Humid,
Muggy, PowerSufficient and PowerTight. In this case study,
Hot (or Humid) is defined as a situation that Temperature

(or Humidity) is greater or equal to 28 degrees (or 80 per-
cent, respectively). Muggy is defined as a compound context
Hot && Humid. These three contexts are refreshed every 5

(a) Context List

(b) ECA Rule List

Figure 7: List of created contexts and ECA rules

seconds. Using PowerDemand, we also create two contexts
PowerSufficient and PowerTight. Here, the threshold of
the tight demand is set to 20,000,000 kW, and refresh in-
terval is set to 30 minutes. Parameters for each context
are summarized in Table 2. Figure 7 (a) shows RuCAS.me
where the five contexts are registered.

Step 3: Creating Actions
Using the appliance control service, we create three actions
Fan_on (turn on a fan), AC_on (turn on an air-conditioner)
and AC_cooling (drive an air-conditioner in cooling mode).
The parameters are summarized in Table 3.

Step 4: Creating ECA rule
Finally, we create two ECA rules Sus-AC and Sus-Fan to
implement the sustainable air-conditioner service. Sus-AC

corresponds to the scenario: “when it is muggy in the lab, if
the power demand is sufficient, turn on an air-conditioner.”.
Sus-Fan corresponds to the scenario where the demand is
tight and the service uses a fan. The parameters for each rule
are summarized in Table 4. Figure 7 (b) shows RuCAS.me
where the two rules are created.

7. DISCUSSION

7.1 Advantage and Limitations
Using the RuCAS platform, every context-aware service

can be uniformly described by a rule, which combines de-
fined contexts and actions. Thus, RuCAS achieves loose cou-
pling of Web services (as a source of contexts), contexts (de-
fined with the data sources), and actions (as an autonomous
callback of the contexts). This improves the reusability of

Table 1: Parameters for creating adapters
adapterid endpoint method property

Temperature http://cs27-hns/sensor/temperature getValue return
Humidity http://cs27-hns/sensor/humidity getValue return
PowerDemand http://setsuden.yahooapis.jp/v1/Setsuden latestPowerUsage?parameter... {usage, capacity}

Table 2: Parameters for creating contexts
contextid type adapter expression interval description

Hot Atomic Temperature value >= 28 5000 It is hot in lab.
Humid Atomic Humidity value >= 80 5000 It is humid in lab.
Muggy Compound — Hot&&Humid 5000 It is muggy (hot and humid) in lab.
PowerSufficient Atomic PowerDemand value < 20000000 1800000 Power demand is sufficient in Kansai region.
PowerTight Atomic PowerDemand value >= 20000000 1800000 Power demand is tight in Kansai region.

Table 3: Parameters for creating actions
actionid url description

Fan on http://cs27-hns/appliance/fan/on Turn on a fan.
AC on http://cs27-hns/appliance/aircon/on Turn on an air-conditioner.
AC cooling http://cs27-hns/appliance/aircon/cooling Drive an air-conditioner in cooling mode.

Table 4: Parameters for creating ECA
ecaid event condition action description

Sus-AC Muggy PowerSufficient {AC on, AC cooling} Sustainable air-conditioning with AC.
Sus-Fan Muggy PowerTight Fan on Sustainable air-conditioning with fan.

existing contexts and actions, and enables more flexible cre-
ation and management of context-aware services.

To see efficiency of service creation, we measured the time
taken for a graduate student to create the sustainable air-
conditioning service using RuCAS.me. It was shown that
the graduate students spent less than ten minutes to com-
plete the task. Although more detailed evaluation is needed,
RuCAS seems to work quite efficiently, to implement custom
context-aware services with various Web services. More de-
tailed evaluation with non-expert users who are not familiar
with Web services programming is left for our future work.

A limitation of the current implementation is the expres-
sive power of the context expression. To avoid complexity,
we define every context expression as a simple logical ex-
pression over present values of Web services. More complex
contexts with past or future (estimated) values combined
with temporal logic are beyond the scope. This is our de-
sign choice, counting the trade-off between the expressive-
ness and complexity. A solution to deal with such a complex
context is to implement it as an external Web service that
returns the evaluation result. Then, RuCAS can import the
Web service via an adapter, to use the complex context for
ECA rules.

Another limitation is that RuCAS cannot validate seman-
tic consistency of the services. Non-expert users may mis-
takenly create ECA rules which contradict to their intention
(e.g., when it is hot, turn on a heater). A method that sup-
ports the semantic validation, debugging and testing would
be helpful for users to create reliable services.

Furthermore, creating a number of ECA rules may cause
functional conflicts among the rules. This is known as the
feature interaction problem [18]. We previously proposed a
method to manage this problem [8]. We plan to integrate the
method with the RuCAS platform in future development.

7.2 Related Work

Sheng et al. proposed ContextServ [14], a platform for
rapid development of context-aware Web services. This method
defines every context in a UML-based language (Contex-
tUML), then translates the definition into a Web service.
Unlike RuCAS, the method is supposed to be used by pro-
fessional system developers who can understand and write
UML. Although the expressiveness is higher than RuCAS,
the method requires high expertise to use. We consider that
the method suits well for implementing the Web services for
complex contexts, Which are discussed in Section 7.1.

Rasch et al. proposed a context-driven personalized ser-
vice discovery system [13]. Niu et al. proposed CARSA [12],
a context-aware reasoning-based service agent model for AI
planning of Web service composition. These studies focus
on an accuracy of the context-aware service discovery and
composition, whereas RuCAS aims the systematic creation
and management of custom context-aware services by vari-
ous clients. Hence, the targets are different. These methods
might be used in RuCAS to enable automatic creation and
management of ECA rules.

Several Web services for managing custom context-aware
services come onto the market. IFTTT [1] is a Web ser-
vice that coordinates various network services (e.g., Gmail,
Twitter, RSS feeds, etc.) based on a rule (called recipe) of
“if this then that”. WigWag [2] provides a similar but more
device-centric service. It defines custom context-aware ser-
vices based on “when then” logic over proprietary sensors
and control devices. These services basically use ready-made
data source (called channel) to define events and actions.
RuCAS differs in using custom-made data sources by creat-
ing adapters for any Web services. This enables more generic
and a wider range of contexts and actions. Also as for the
rule description logic, IFTTT and WigWag basically use an
event and an action only, while our ECA rule uses a condi-

tion in addition to them. The condition allows a service to
have different actions for the same event.

Xively [3] is a cloud service that provides a data platform
for the internet of things. By binding a real-world device
with Xively API, data from the device can be shared within
the cloud service. Xively mainly focuses on gathering and
sharing data from devices in global locations, rather than
defining and reusing custom contexts and actions. There-
fore, we consider that RuCAS can complement Xively by
using Xively as data source of RuCAS.

8. CONCLUSION
In this paper, we have described the detail of the design

and the implementation of RuCAS and its service platform,
called RuCAS platform. RuCAS is a rule-based framework
for creating and managing context-aware services with Web
services. In the RuCAS, contexts, actions and services are
systematically managed by five layers: Web service layer,
adapter layer, context layer, action layer and ECA rule layer.
We also developed RuCAS.me, which is a GUI front-end of
the RuCAS platform. A case study demonstrated the prac-
tical feasibility. Using the RuCAS platform and RuCAS.me,
users and client applications can manage their own context-
aware services efficiently and flexibly.

Our future work includes experimental evaluation with
non-expert users, as well as investigation of semantic val-
idation and the feature interaction problem. Also, we are
interested in finding new application domains of RuCAS,
such as factory controls, smart cities and cloud service man-
agement.

9. ACKNOWLEDGMENTS
This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (C) (No.24500079, No.24500258),
(B) (No.26280115), Young Scientists (B) (No.26730155)] and
Kawanishi Memorial ShinMaywa Education Foundation.

10. REFERENCES
[1] IFTTT. https://ifttt.com. Accessed: 2014-07-30.

[2] Wigwag. http://www.wigwag.com. Accessed:
2014-07-30.

[3] Xively. https://xively.com. Accessed: 2014-07-30.

[4] Yahoo JAPAN Web API.
http://developer.yahoo.co.jp/webapi/shinsai.
Accessed: 2014-07-30.

[5] Y. Chon and H. Cha. Lifemap: A smartphone-based
context provider for location-based services.
Transactions on Pervasive Computing, 10(2):58–67,
2011.

[6] N. Cohen, J. Black, P. Castro, M. Ebling, B. Leiba,
A. Misra, and W. Segmuller. Building context-aware
applications with context weaver. IBM Research
Division, 2004.

[7] X. Li and W. Zhang. The design and implementation
of home network system using OSGi compliant
middleware. Transactions on Consumer Electronics,
50(2):528–534, 2004.

[8] M. Nakamura, H. Igaki, Y. Yoshimura, and
K. Ikegami. Considering online feature interaction
detection and resolution for integrated services in

home network system. In International Conference on
Feature Interactions in Telecommunications and
Software Systems, pages 191–206, 2009.

[9] M. Nakamura, S. Matsuo, and S. Matsumoto.
Supporting end-user development of context-aware
services in home network system. In R. Lee, editor,
Studies in Computational Intelligence, pages 159–170.
Springer, 2012.

[10] M. Nakamura, S. Matsuo, S. Matsumoto,
H. Sakamoto, and H. Igaki. Application framework for
efficient development of sensor as a service for home
network system. In International Conference on
Services Computing, pages 576–583, 2011.

[11] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and
K. Matsumoto. Constructing home network systems
and integrated services using legacy home appliances
and Web services. International Journal of Web
Services Research, 5(1):82–98, 2008.

[12] W. Niu, G. Li, H. Tang, X. Zhou, and Z. Shi. CARSA:
A context-aware reasoning-based service agent model
for AI planning of Web service composition. Journal
of Network and Computer Applications,
34(5):1757–1770, 2011.

[13] K. Rasch, F. Li, S. Sehic, R. Ayani, and S. Dustdar.
Context-driven personalized service discovery in
pervasive environments. World Wide Web,
14(4):295–319, 2011.

[14] Q. Sheng, S. Pohlenz, J. Yu, H. Wong, A. H. H. Ngu,
and Z. Maamar. ContextServ: A platform for rapid
and flexible development of context-aware web
services. In IEEE 31st International Conference on
Software Engineering, pages 619–622, 2009.

[15] H. Takatsuka, M. Nakamura, S. Saiki, and
S. Matsumoto. Developing service platform for web
context-aware services towards self-managing
ecosystem. In The Third International Workshop on
Self-Managing Pervasive Service Systems, 2014. (to
appear).

[16] H. Takatsuka, M. Nakamura, S. Saiki, and
S. Matsumoto. A rule-based framework for managing
context-aware services based on heterogeneous and
distributed Web services. In 15th ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed
Computing. IEEE Computer Society, 2014.

[17] T. Velte, A. Velte, and R. Elsenpeter. Cloud
Computing, A Practical Approach. McGraw-Hill, Inc.,
1st edition, 2010.

[18] M. Wilson, M. Kolberg, and E. Magill. Considering
side effects in service interactions in home
automation-an online approach. Feature Interactions
in Software and Communication Systems IX, pages
172–187, 2008.

[19] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and
K. Johnson. M2M: From mobile to embedded internet.
IEEE Communications Magazine, 49(4):36–43, 2011.

[20] S. Yamamoto, N. Kouyama, K. Yasumoto, and M. Ito.
Maximizing users comfort levels through user
preference estimation in public smartspaces. In
International Conference on Pervasive Computing and
Communications Workshops, pages 572–577, 2011.

