
Developing Service Platform for Web
Context-Aware Services Towards Self-Managing

Ecosystem

Hiroki Takatsuka(B), Sachio Saiki, Shinsuke Matsumoto,
and Masahide Nakamura

Graduate School of System Informatics, Kobe University, Kobe, Japan
tktk@ws.cs.kobe-u.ac.jp, sachio@carp.kobe-u.ac.jp,

{shinsuke,masa-n}@cs.kobe-u.ac.jp

Abstract. The convergence of cloud/service computing and M2M/IoT
systems provides real-world sensing and actuation as globally distributed
Web services. Context-aware services using such Web services (we call
them Web Context-Aware Services, Web-CAS) are promising in many
systems. However, definition of contexts and Web services to be used
highly depend on individual environments and preferences. Therefore,
it is essential to have a place for self-management, where individual
users can efficiently manage their own Web-CAS by themselves. In this
paper, we develop a service platform, called RuCAS platform, which
works as PaaS for self-managing Web-CAS. In the platform, contexts
and actions are defined by adapting the distributed Web services, and
every Web-CAS is managed in form of an ECA (Event-Condition-Action)
rule. Through Web-API of RuCAS, individual clients can rapidly create,
update, delete and execute custom contexts and services. To support
non-expert users, we implement a GUI front-end of the RuCAS platform,
called RuCAS.me. A case study of sustainable air-conditioning demon-
strates practical feasibility. Finally, we discuss how the RuCAS platform
works to achieve self-managing ecosystem of Web-CAS.

Keywords: Web services · Context-awareness · Self-management ·
Event-condition-action rule · Home network system

1 Introduction

A context refers to situational information derived from dynamic data of a sensor
or a system. A context-aware service is a service that automatically detects
a change of contexts and performs appropriate actions corresponding to the
context change [7]. For instance, a context Hot can be derived from information
that “the value of a temperature sensor in a room is higher than 28 degrees”.
An example of context-aware service, say “Automatic Air-conditioning”, turns
on an air-conditioner when the context Hot holds. Traditionally, such context-
aware services had been studied extensively in ubiquitous/pervasive computing,
c© Springer International Publishing Switzerland 2015
F. Toumani et al. (Eds.): ICSOC 2014, LNCS 8954, pp. 270–280, 2015.
DOI: 10.1007/978-3-319-22885-3 24

tktk@ws.cs.kobe-u.ac.jp

Developing Service Platform for Web Context-Aware Services 271

where each contexts was defined using situated sensors [15] or hand-held devices
(e.g., smartphone) within a local smart space [4].

However, cloud/service computing [13] and IoT/M2M technologies [14] dra-
matically extend the scope of context-aware services. Cloud/service computing
abstracts heterogeneous computing resources and data, and provides them as
interoperable Web services. IoT/M2M allow various devices to communicate
with each other without human intervention. The combination of both technolo-
gies provides real-world sensing and actuation as globally distributed Web ser-
vices. Relevant studies include LinkSmart middleware [6], service-oriented home
network system [10], and sensor service framework [9]. Using such Web services
to build context-aware services is a promising approach, since a wide variety of
contexts and actions can be seamlessly defined over distributed and heteroge-
neous resources. In this paper, we refer to such context-aware services with Web
services as Web context-aware services (or simply Web-CAS).

A major challenge of Web-CAS lies in how to manage unstable and com-
plex relations among Web services, defined contexts, and actions caused by the
contexts. In general, definition of contexts and Web services to be used highly
depend on individual environments and preferences. For instance, in the Auto-
matic Air-conditioning service, which temperature sensor and air-conditioner
should be used depends on the room where the service is operated. The defini-
tion of Hot context with 28 degree may not be reasonable in winter. A user may
prefer to turn on a fan instead of the expensive air-conditioner. To meet var-
ious requirements and preferences, every Web-CAS should not be hard-coded.
Instead, it is essential to have a place for self-management, where individual
users can efficiently manage own Web-CAS by themselves.

In this paper, we develop a service platform, called RuCAS platform. Intu-
itively, it works as PaaS (Platform-as-a-Service), which provides self-managing
Web-CAS capabilities for various clients. The RuCAS platform is designed
specifically based on the following three requirements: (R1) every context-aware
service can be defined by arbitrary Web services in an intuitive and systematic
manner, (R2) individual client can dynamically create, update, delete and exe-
cute custom contexts, actions and services, (R3) even non-expert users can
develop and manage their own context-aware services. As far as we know, there
exists no service platform satisfying all the requirements.

To satisfy requirement R1, RuCAS manages every Web-CAS in form of an
ECA (Event-Condition-Action) rule. The event is a context that triggers a ser-
vice. The condition refers to a guard condition to execute the service. The action
is a Web service executed by the service. As for requirement R2, we imple-
ment the platform with five layers: Web service layer, adapter layer, context
layer, action layer and ECA rule layer. Each layer exhibits Web-API (REST
or SOAP) so that individual clients can manage their own elements. Finally, to
meet requirement R3, we implement a GUI front-end of the RuCAS platform,
called RuCAS.me. Based on an intuitive user interface, a user can easily cre-
ate and manage adapters, contexts, actions, and ECA rules within the RuCAS
platform.

tktk@ws.cs.kobe-u.ac.jp

272 H. Takatsuka et al.

To evaluate practical feasibility, we conduct a case study using the RuCAS
platform and RuCAS.me. Integrating an external Web service with our home
network system [10], we implement a sustainable air-conditioning service, which
contributes to peak shaving of regional energy consumption. We also discuss how
the RuCAS platform works to achieve self-managing ecosystem of Web-CAS.

2 RuCAS: Rule-Based Management Framework for Web
Context-Aware Services

RuCAS (Rule-based management framework for Web Context-Aware Service) is
a service framework, specifically designed to help individual clients (human users
and software applications) to easily create and manage their own Web-CAS.

2.1 Event-Condition-Action (ECA) Rule

The ECA rule is an important design decision of RuCAS, which defines every
Web-CAS as a triplet of [Event, Condition, Action]. This design decision is to
implement Web-CAS by loose coupling of Web services as data sources, contexts
defined with the data sources, and actions to be performed by the contexts.

A context-aware service can be described by a rule that “when a context
becomes true, do something”. Intuitively, the part “when a context becomes
true” corresponds to the event, whereas “do something” corresponds to the
action. However, the above rule lacks flexibility, because the action always fires
when the context becomes true. Therefore, we extend the rule a bit such that
“when a context becomes true, if a condition is satisfied, do something”. The
part “if a condition is satisfied” corresponds to the condition. More specifically,

– A context is a situational information defined by a logical expression over
data obtained from a Web service. Depending on the value of the data, every
context is evaluated to true or false. A context can be also defined by a
composition of the existing contexts.

– An event is a context triggering the execution of a context-aware service.
– A condition is a guard condition enabling the execution of a context-aware

service. A condition is defined as a conjunction of one or more contexts.
– An action is a set of operations executed by a context-aware service. An action

is defined by one or more Web services.
– ECA Rule: Let c1, c2, ... be contexts, and let a1, a2, ... be invocations of Web

services. An ECA rule r is defined by r = [E : ci, C : {cj1 , cj2 , ..., cjm}, A :
{ak1 , ak2 , ..., akn

}], where E is an event, C is a condition, A is an action. For
r, we say “event E occurs” if the value of context ci moves from false to
true. When E occurs, if all contexts cj1 , cj2 , ..., cjm are satisfied, we say “r is
executed”. When r is executed, all Web services ak1 , ak2 , ..., akn

are invoked.

For instance, a context-aware service “when it is hot, if a user is present in
a room, turn on an air-conditioner” can be described by an ECA rule: [E : Hot,
C : {PresentUser}, A : {AC.on}]. Thus, the ECA rules give an intuitive but
systematic foundation to define Web-CAS, which satisfies the requirement R1.

tktk@ws.cs.kobe-u.ac.jp

Developing Service Platform for Web Context-Aware Services 273

2.2 RuCAS Platform: RuCAS as Service Platform

To allow various clients to dynamically manage their own contexts, actions and
ECA rules via network, we implement RuCAS as a service platform. The imple-
mentation is deployed in a cloud as PaaS (Platform-as-a-Service).

Figure 1 represents a system architecture of the RuCAS platform. To build
ECA rules from loosely-coupled components, the platform consists of five layers:
Web service layer, adapter layer, context layer, action layer and ECA rule layer.

Web Service Layer: This layer contains existing Web services used as input
or output of Web-CAS. The input Web service is a Web service that can return a
certain value (e.g., numeric, Boolean, string, etc.) for defining a context. Typical
examples include a value from a sensor service, status of a device, dynamic Web
information (e.g., weather, stock price), RSS, clock, system logs. The output Web
service is a Web service that can yield an action. Examples include an operation
of home network system (e.g., switch on/off, voice announce, etc.) and a request
to an information system (e.g., send an email, post a comment to SNS, etc.).

Adapter Layer: To obtain data from an input Web service, a client needs to
invoke Web-API and extract necessary data by parsing the return value. How-
ever, Web-API and the return value vary from one service to another. Hence, this
layer creates an adapter that normalizes the heterogeneous interface. Specifically,
every Web-API used to obtain data is adapted to getValue(). For example,
we can create TempAdapter, with a temperature Web-API, say http://www.
hns/TemperatureSensorService/getTemperature. RuCAS adapts the Web-API
so that TempAdapter.getValue() returns the temperature.

Context Layer: This context layer manages contexts defined by data from Web
services via the adapter layer. Every context is defined by context ID and context

Fig. 1. Architecture of RuCAS platform

tktk@ws.cs.kobe-u.ac.jp

274 H. Takatsuka et al.

expression. The context ID is a label to identify every context. The context
expression is a logical formula, in the form of Adapter.value comp op const,
where comp op is a comparison operator and const is a constant value. For
example, to define Hot context to be “the temperature is more than 28 degrees”,
RuCAS describes it by [Hot: TempAdapter.value > 28]. Similarly, to define
Humid to be “the humidity is more than 70 percent”, RuCAS describes it by
[Humid: HumidAdapter.value > 70]. Each context can be associated with a
refresh interval, by which RuCAS periodically evaluates the context expression.
For example, when the refresh interval of Hot is one minute, RuCAS obtains a
new value from TempAdapter and evaluates Hot every minute.

RuCAS can define two types of contexts: atomic and compound. The atomic
context is a context directly defined by a single Web service. The compound
context is a context defined by the existing contexts combined with logical oper-
ators (!: NOT, &&: AND, ||: OR). For example, a compound context Muggy can
be defined by combining Hot and Humid such that [Muggy: Hot && Humid].

Action Layer: This layer manages actions, each of which wraps an output
Web service. An action is defined by an endpoint, a method name, and para-
meters of the Web service. Each action is associated with action ID, by which
RuCAS invoke the Web service as an action. For example, we create an action
CoolingOn, by using an air-conditioner service, say http://www.hns/ACService/
on?mode=cooling. When RuCAS invokes CoolingOn, the Web service is exe-
cuted to turn on an air-conditioner with a cooling mode.

ECA Rule Layer: The ECA rule layer defines context-aware services as ECA
rules. An ECA rule can be created as follows:

1. Define an event by choosing a single context from the context layer.
2. Define a condition by choosing one or more contexts from the context layer.
3. Define an action by choosing one or more actions from the action layer.

The created ECA rules are executed based on the semantics (see Sect. 2.1).

To meet the requirement R2, each layer exhibits Web-API to create, update,
delete and execute the custom elements. Using REST or SOAP protocol, clients
in various platforms can execute the Web-API to self-manage their Web-CAS.

The RuCAS platform was implemented with the following technologies: Lan-
guage: Java 1.7.0 21, Database: MongoDB 2.4.3, Web server: Apache Tom-
cat 7.0.39, Web service engine: Apache Axis2 1.6.2.

2.3 RuCAS.me

We have also developed a Web application, called RuCAS.me, to support non-
expert users who are unfamiliar with Web service programming (see the require-
ment R3). RuCAS.me works as a GUI front-end of the RuCAS platform.

Figure 2 shows screenshots, with which a user can easily create, edit and
delete own RuCAS elements (adapter, context, action, ECA rule) using a Web
browser. Figure 2 (a) shows the index page of RuCAS.me consisting of four

tktk@ws.cs.kobe-u.ac.jp

Developing Service Platform for Web Context-Aware Services 275

Fig. 2. Screenshots of RuCAS.me

buttons to manage the four elements. Figure 2 (b) shows an adapter creation
page. By filling the form and pressing the apply button, a new adapter is created
within the RuCAS platform. Figure 2 (c) shows a context creation page. By
filling the form and pressing the apply button, a new context is created within
the RuCAS platform. A created context is enumerated in a context list page
(see Fig. 2 (f)), where a user can manage the existing contexts. As shown in the
figure, a context that currently holds appears as a checked box. This helps a user
understand the current situation. Figure 2 (d) shows an action creation page. By
filling the form and pressing the apply button, a new action is created within
the RuCAS platform.

Figure 2 (e) shows an ECA rule creation page. The list in the left side of the
page enumerates contexts and actions that are already registered in the platform.
From the list, a user just selects a preferred context for an event, one or more
contexts for a condition and one or more actions. The selected elements appear
in the rule pane (in the right side), in the form of ECA rule. In this figure, a user
creates an ECA rule to implement a context-aware service FanService: “when

tktk@ws.cs.kobe-u.ac.jp

276 H. Takatsuka et al.

Table 1. Parameters for creating adapters

Adapterid Endpoint Method Property

Temperature http://www.cs27-hns/sensor/temperature getValue return

Humidity http://www.cs27-hns/sensor/humidity getValue return

PowerDemand http://setsuden.yahooapis.jp/Setsuden latestPower {usage,capacity}
Usage

Table 2. Parameters for creating contexts

Contextid Type Adapter Expression Interval Description

Hot A Temperature value>=28 5000 It is hot in lab

Humid A Humidity value>=80 5000 It is humid in lab

Muggy C — Hot&&Humid 5000 It is muggy in lab

PowerSufficient A PowerDemand value<20000000 1800000 Power demand is sufficient in Kansai

region

PowerTight A PowerDemand value>=20000000 1800000 Power demand is tight in Kansai

region

Table 3. Parameters for creating actions

Actionid url Description

Fan on http://www.cs27-hns/appliance/fan/on Turn on a fan

AC on http://www.cs27-hns/appliance/AC/on Turn on an AC

AC cooling http://www.cs27-hns/appliance/AC/cooling Drive an AC in cooling mode

the room is hot, if the room is humid, turn on the fan”. A created ECA rule is
enumerated in an ECA list page (see Fig. 2 (g)) to manage existing rules.

RuCAS.me was implemented with the following technologies: Language:
JavaScript, HTML5, JavaScript Library: jQuery 2.0.3, CSS framework:
TwitterBootstrap v3.0.3, bootmetro, Tested Browser: Google Chrome 33.0.

3 Case Study: Sustainable Air-Conditioning Service

To illustrate the practical feasibility of the developed system, we create
the sustainable air-conditioning service. This service performs automatic air-
conditioning in our laboratory (CS27), when the lab becomes muggy. For this,
if the regional power demand (in Kansai area) is sufficient, turn on an air-
conditioner. However, if the demand is tight, use a fan that consumes much
lower energy. To implement the service, we use the following Web services:

– Temperature/Humidity Sensor Services [9]: Web services that obtain
room temperature and humidity of in CS27.

– Power Demand API [3]: External Web service that obtains the current
power demand in Japan Kansai region, provided by Yahoo Japan.

– Appliance Control Service [10]: Web service that controls appliances in
the lab, including the air-conditioner and the fan.

tktk@ws.cs.kobe-u.ac.jp

Developing Service Platform for Web Context-Aware Services 277

Table 4. Parameters for creating ECA

ecaid Event Condition Action Description

Sus AC Muggy PowerSufficient {AC on, AC cooling} Air-conditioning with an AC

Sus Fan Muggy PowerTight Fan on Air-conditioning with a fan

Using RuCAS.me, we create the service based on the following recipe:

Step 1 (Creating Adapters): We first create three adapters Temperature,
Humidity and PowerDemand, using the temperature/humidity sensor services
and the power demand API. The parameters are summarized in Table 1.

Step 2 (Creating Contexts): Using the adapters, we then create five contexts
Hot, Humid, Muggy, PowerSufficient and PowerTight. In this case study, Hot
(or Humid) is defined as a situation that Temperature (or Humidity) is greater or
equal to 28 degrees (or 80 percent, respectively). Muggy is defined as a compound
context Hot && Humid. These three contexts are refreshed every 5 seconds. Using
PowerDemand, we also create two contexts PowerSufficient and PowerTight.
Here, the threshold of the tight demand is set to 20,000,000 kW, and refresh
interval is set to 30 min. Parameters for each context are summarized in Table 2.
Figure 2 (f) shows RuCAS.me where the five contexts are registered.

Step 3 (Creating Actions): Using the appliance control service, we create
three actions Fan on (turn on a fan), AC on (turn on an air-conditioner) and
AC cooling (drive an air-conditioner in cooling mode), as shown in Table 3.

Step 4 (Creating ECA Rule): Finally, we create two ECA rules Sus AC
and Sus Fan to implement the sustainable air-conditioner service. Sus AC cor-
responds to the scenario: “when it is muggy in the lab, if the power demand
is sufficient, turn on an air-conditioner”. Sus Fan corresponds to the scenario
where the demand is tight and the service uses a fan. The parameters for each
rule are summarized in Table 4. Figure 2 (g) shows the two rules are created.

4 Discussion

4.1 Operating RuCAS Platform for Self-Managing Ecosystem

The RuCAS platform can be a key component for self-managing ecosystem,
which alleviates increasing complexity, scale and development/operation cost
of Web-CAS. Figure 3 shows a block diagram involving the RuCAS platform
and related components. A solid arrow represents a manual (or proprietary)
operation performed by a user, while a dotted arrow represents an autonomic
operation.

First, individual users create custom contexts and ECA rules (with
RuCAS.me or proprietary client software). For given rules, the RuCAS plat-
form periodically pulls current status from distributed Web services, and actu-
ates designated Web services. This forms a small ecosystem as depicted by a

tktk@ws.cs.kobe-u.ac.jp

278 H. Takatsuka et al.

Fig. 3. RuCAS platform as component of self-management ecosystem

left-small circle. The actuation of the Web service yields some effects within the
global/local environment. The users monitor the effects, and update contexts
and rules if needed. This forms a global ecosystem depicted by a large circle.

It is also promising to integrate an external autonomic manager, which con-
ducts autonomic creation and optimization of contexts and ECA rules. This
causes an extra ecosystem depicted as a right-small circle in Fig. 3. The inte-
gration is quite easy, since the RuCAS platform is interoperable with any other
system via Web-API. We are currently developing an autonomic manager for
our home network system with referring to related studies (e.g., [5,16]).

4.2 Related Work

As for self-managing pervasive systems, Zhang et al. proposed a semantic web
based approach [16], and Ada et al. [5] proposed extension of iPOJO. They
aim to satisfy four aspects of self-management [8] (i.e., self-configuration, self-
optimization, self-healing and self-protection), by managing all pervasive objects
under a proprietary middleware. On the other hand, RuCAS coordinates existing
distributed Web services, for which we cannot enforce a specific middleware.

Several studies of context-awareness with Web services exist. Rasch et al.
proposed a context-driven personalized service discovery system [12]. Niu et al.
proposed CARSA [11], a context-aware AI planning of Web service composition.
These studies use contexts to improve an accuracy of Web service discovery and
composition. Whereas, RuCAS aims the systematic self-management of custom
context-aware services using Web services. Thus, the targets are different.

Practical services for self-managing context-aware services recently come onto
the market. IFTTT [1] coordinates various network services (e.g., Gmail, Twitter,
RSS feeds, etc.) based on a rule of “if this then that”. WigWag [2] defines custom
context-aware services based on “when then” logic over proprietary sensors and

tktk@ws.cs.kobe-u.ac.jp

Developing Service Platform for Web Context-Aware Services 279

control devices. These services basically use ready-made data source (called chan-
nel) to define events and actions. RuCAS differs in using custom data sources by
creating adapters for arbitrary Web services. Also IFTTT and WigWag basically
use an event and an action only, while our ECA rule uses a condition together with
them. This makes RuCAS more expressive.

5 Conclusion

In this paper, we have developed the RuCAS platform for self-managing context-
aware services with distributed Web services (Web-CAS). In the platform,
contexts, actions and services are systematically managed by five layers: Web ser-
vice, adapter, context, action and ECA rule. Using Web-API, individual clients
can manage their own context-aware services efficiently and flexibly. To support
non-expert users, We also developed a GUI front-end, RuCAS.me. A case study
demonstrated the practical feasibility. Finally, we discussed how the RuCAS
platform work within the self-managing ecosystem of Web-CAS.

Our future work includes development of the autonomic manager discussed
in Sect. 4.1, investigation of self-healing and self-protection aspects of Web-CAS.

Acknowledgments. This research was partially supported by the Japan Ministry of
Education, Science, Sports, and Culture [Grant-in-Aid for Scientific Research (C) (No.
24500079, No. 24500258), (B) (No. 26280115), Young Scientists (B) (No. 26730155)]
and Kawanishi Memorial ShinMaywa Education Foundation.

References

1. IFTTT. https://ifttt.com. Accessed 30 July 2014
2. Wigwag. http://www.wigwag.com. Accessed 30 July 2014
3. Yahoo JAPAN Web API. http://developer.yahoo.co.jp/webapi/shinsai. Accessed

30 July 2014
4. Chon, Y., Cha, H.: Lifemap: a smartphone-based context provider for location-

based services. Trans. Pervasive Comput. 10(2), 58–67 (2011)
5. Diaconescu, A., Bourcier, J., Escoffier, C.: Autonomic iPOJO: towards self-

managing middleware for ubiquitous systems. In: IEEE International Conference
on Wireless and Mobile Computing, Networking and Communications, pp. 472–477
(2008)

6. Eisenhauer, M., Rosengren, P., Antolin, P.: Hydra: a development platform for inte-
grating wireless devices and sensors into ambient intelligence systems. In: Giusto,
D., Iera, A., Morabito, G., Atzori, L. (eds.) The Internet of Things, pp. 367–373.
Springer, New York (2010)

7. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building
context-aware services. J. Netw. Comput. Appl. 28(1), 1–18 (2005)

8. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–
50 (2003)

9. Nakamura, M., Matsuo, S., Matsumoto, S., Sakamoto, H., Igaki, H.: Application
framework for efficient development of sensor as a service for home network system.
In: International Conference on Services Computing, pp. 576–583 (2011)

tktk@ws.cs.kobe-u.ac.jp

280 H. Takatsuka et al.

10. Nakamura, M., Tanaka, A., Igaki, H., Tamada, H., Matsumoto, K.: Constructing
home network systems and integrated services using legacy home appliances and
Web services. Int. J. Web Serv. Res. 5(1), 82–98 (2008)

11. Niu, W., Li, G., Tang, H., Zhou, X., Shi, Z.: CARSA: a context-aware reasoning-
based service agent model for AI planning of Web service composition. J. Netw.
Comput. Appl. 34(5), 1757–1770 (2011)

12. Rasch, K., Li, F., Sehic, S., Ayani, R., Dustdar, S.: Context-driven personalized ser-
vice discovery in pervasive environments. World Wide Web 14(4), 295–319 (2011)

13. Velte, T., Velte, A., Elsenpeter, R.: Cloud Computing, A Practical Approach, 1st
edn. McGraw-Hill Inc, New York (2010)

14. Wu, G., Talwar, S., Johnsson, K., Himayat, N., Johnson, K.: M2M: from mobile
to embedded internet. IEEE Commun. Mag. 49(4), 36–43 (2011)

15. Yamamoto, S., Kouyama, N., Yasumoto, K., Ito, M.: Maximizing users comfort
levels through user preference estimation in public smartspaces. In: International
Conference on Pervasive Computing and Communications Workshops, pp. 572–577
(2011)

16. Zhang, W., Hansen, K.: Semantic web based self-management for a pervasive ser-
vice middleware. In: Second IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, pp. 245–254 (2008)

tktk@ws.cs.kobe-u.ac.jp

	ICSOC2014_workshop
	298/450
	299/450
	300/450
	301/450
	302/450
	303/450
	304/450
	305/450
	306/450
	307/450
	308/450

