
Exploiting House Log of Home Network System
to Derive Contexts with Past Situations

Yuichi Watanabe, Tetsuya Masuda, Shinsuke Matsumoto, Sachio Saiki, and
Masahide Nakamura

Kobe University,
1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan

{nabe@ws.cs,masuda@ws.cs,shinsuke@cs,sachio@carp,masa-n@cs}.kobe-u.ac.jp

Abstract. In the conventional context-aware services of the home net-
work system (HNS), every context has been defined by current (or recent)
situations only. Considering past situations in a house would significantly
extend the expressive power of the context-aware services. In this paper,
we propose a new type of context, called log context, by using house log
of the HNS, extensively. The log context is defined with both the current
and past situations, where the current situation is obtained by sensors
or device status of the HNS while the past situations are derived by
queries to the house log. We also develop a system that can derive the
log contexts within an actual HNS. To manage individual log contexts
efficiently, the system is designed by four layers: application layer, log
context layer, log query layer, and DB connector layer. Using the devel-
oped system, we evaluate practical log contexts: “It is much colder than
yesterday”, and “Today is the coldest day for past several years”.

Key words: home network system, context-aware service, house log

1 Introdaction

Research and development of Home Network Systems (HNS) (also called smart
home) have gathered great attention. HNS provides value-added services for
home users by connecting sensors (e.g., temperature, humidity, brightness, etc.)
and household appliances (e.g., TVs, air-conditioners, lights, etc.) to the home
network. We are developing an actual HNS, called CS27-HNS [1]. Although there
are many types of services in HNS, context-aware services are considered to be
most valuable but challenging services. In HNS, the context-aware services auto-
matically control the appliances (as desired by home users), based on situational
contexts characterized by the sensors.

In the conventional context-aware services, every context was usually defined
by the current (or recent) values of the sensors [2][3][4]. For example, context “it
is cold” can be defined by “the value of the temperature sensor is less than 8
degree”. To efficiently manage such context-aware services within CS27-HNS, we
developed a framework called sensor service framework (SSF) [5].

As we developed various context-aware services with SSF, we have found
that contexts with the current values only are insufficient to meet individual

2 Y. Watanabe et al.

requirements of home users. For example, compared to “it is cold”, contexts like
“it is colder than yesterday”, or “it is the coldest day for three years” are much
more informative for a user to make a decision. To define such contexts, we need
to consider past situations, i.e., the past values of sensors. However, they are
beyond the scope of the conventional framework.

Our goal here is to extend the expressive power of the conventional methods,
so that every context can be defined with both the current and past situations.
Here the term “past” is not limited to “recent”, which can vary from minutes to
years. As for similar but different approaches, there exist studies using context
history [6][7][8][9]. The context history is a database which records time-series
satisfactions of contexts. It is used to predict user preference or to recommend
services. However, the context history is basically the record of the past contexts,
but not to define new contexts using the past situations. Thus, the history can
say “it was cold, yesterday”, but does not say “it is colder than yesterday”.

To achieve our goal, we extensively use house log in this paper. The house log
is history of data acquired from the sensors and the appliances of HNS [10]. Typ-
ical data include sensor values, appliance status, power consumption, etc. Here
we use the house log to retrieve past situations in HNS. For example, yesterday’s
temperature can be obtained by a query to the house log. Comparing this with
the current temperature evaluates the context “it is colder than yesterday”. We
call such a context defined with queries to the house log, log context.

In this paper, we first present a method to define the log contexts. The
original context was defined by an expression over the current sensor values. For
the log context, we extend the expression so that it can contain log queries, which
are queries to the house log. We then develop a system that can define and derive
actual log contexts within the CS27-HNS environment. To manage individual log
contexts efficiently, the system is designed by four layers: application layer, log
context layer, log query layer and DB connector layer. Using the system, we
define and evaluate practical contexts. Experimental results show that the time
for evaluating the log contexts is sufficiently short for practical use.

2 Preliminaries

2.1 Home Network System

Home network system (HNS) provides value-added services by connecting house-
hold appliances and sensors to home network. Each appliance (or sensor) has
API, by which external systems can control the appliance. We have been de-
veloping a real HNS, called CS27-HNS [1]. Adopting the service oriented ar-
chitecture (SOA), every device in CS27-HNS can be used as a Web service. A
client can access any device with a platform-independent protocol (i.e., REST
or SOAP), which achieves high interoperability and programmability. For exam-
ple, to get a temperature from a sensor, a client just accesses http://cs27-hns/
TemperatureSensor/getValue. Accessing http://cs27-hns/AirConditioner/
on?mode=heating turns on an air-conditioner in a heating mode.

Exploiting House Log of Home Network System 3

2.2 House Log

House log is history of data that are acquired from the sensors and the appliances
in HNS. In [10], we classify the house log into the following three types.

– Energy Log: It refers to log data of energy consumption in a house, including
electricity, water, gas and so on.

– Device Log: It refers to log data taken from appliances, including status,
operations and errors. It characterizes human activities within a house.

– Environment Log: It refers to log data taken from sensors, including temper-
ature, humidity and illuminance. It characterizing the environment a house.

Traditionally, the context-aware services consumed only interesting data to
evaluate the context. All irrelevant data were discarded without being stored,
since the storage was limited and expensive. Now in the era of cloud computing
and big data, we can manage large-scale data with inexpensive storage. Thus, it
is realistic to store any kinds of data from HNS as house log.

In our CS27-HNS, we have been accumulating large-scale house log for several
years, using cloud technologies [10]. For example, our environment log comprises
of 50 million records of sensor data for approximately four years. In this paper,
we assume that the house log is managed by a certain DBMS, and data can be
searched by a query (e.g., SQL, Hive, Pig, etc.).

2.3 Current Context-Aware Services

A context-aware service is a service that autonomously executes appropriate ac-
tions when a context is established. A context is defined by situational informa-
tion characterized by sensors. We have developed the sensor service framework
which efficiently creates and manages context-aware services in CS27-HNS [5].

In this framework, a context is defined according to a format [context name:
context expression]. In the format, context name is an identifier of the con-
text, while context expression is an expression over a sensor value that de-
fines the context. Figure 1 shows a syntax diagram for the context expression. An
atomic context expression is defined by a current sensor value (CurrentValue) and
a constant threshold (FixedValue) connected by a relational operator. Current-
Value (or FixedValue) takes a value over a primitive type. Combining multiple
expressions by logical operators builds a composite context expression.

For instance, let us define a context Cold by the following atomic expression:� �
[Cold: tempSensor01 < 8]

� �
We assume that the variable tempSensor01 holds the current value of a temper-
ature sensor tempSensor01 in HNS. Thus, Cold is defined by a situation that
the temperature captured by tempSensor01 is under 8 degree. A context takes
a truth value (true or false) by evaluating the context expression. For example,
Cold is evaluated to be true when the temperature is under 8 degree. Note in
this framework that every context expression is constructed by current sensor
values. Thus, every context is defined by a current situation only.

4 Y. Watanabe et al.

AtomicContextExpression

Primitive

RelationalOperator

CompositeContextExpression

LogicalOperator

CurrentValue FixedValue

Fig. 1. Syntax diagram of context expression (original version)

3 Log Context: Considering Past Situation in Context

3.1 Key Idea

This paper aims to extend the previous framework so that a context can be
defined by both current and past situations. For this, we extensively use the
house log. As seen in Section 2.2, the house log is comprised of time-stamped
records gathered from various devices in HNS. Hence, the past situation in HNS
can be retrieved by a “query to the house log”, which we call log query.

Our key idea is to allow the context expression to contain log queries. Now,
the current situation is captured by the sensor, while the past situation may be
characterized by the log query. We call the extended context, log context.

Let us consider a log context “it is colder than yesterday”. To define the con-
text, we need to compare the current temperature and yesterday’s temperature.
The current temperature may be obtained by tempSensor01 as seen in Section
2.3. Yesterday’s temperature may be obtained by a log query retrieving the value
of tempSensor01 of yesterday in the same time as now. Details of the extension
of context expression is explained as follows.

3.2 Extending Context Expression with Log Query

Figure 2 shows a syntax diagram of the extended context expression. In the
extended version, an atomic context expression is defined by Elements, which
are arithmetic expressions over CurrentValue, FixedValue and new LogQuery.

LogQuery defines a query to the house log that extracts a single value used
in the context expression. According to an SQL-like format, a log query is con-
structed by SELECT, FROM and WHERE clauses. The SELECT clause specifies what
attribute in the house log should be computed into a single value by which
set function. The log attributes include date of the log, value of data, device
appliance, etc. The set functions involve average, sum, max, min, etc.

The FROM clause defines which type of house log should be used. As seen
in Section 2.2, the house log is is classified into three types: energy log, device

Exploiting House Log of Home Network System 5

log or environment log. The WHERE clause determines a condition what log data
should be considered (log expression). The log expression is constructed by the
logical combination of comparative expressions, each of which is defined by a log
attribute and a primitive value connected by a relational operator.

LogQuery

LogExpression

SetFunction LogTypeLogAttribute

ElementAtomicContextExpression ArithmeticOperator

Fig. 2. Syntax diagram of context expression (extended version)

3.3 Illustrative Examples of Log Context and Log Query

Here we describe some examples to support understanding. Let us start with
a log query for yesterday’s temperature. More specifically, we define a log
query yesterdayTemp01, which calculates “the room temperature measured by
tempSensor01 of yesterday around the same time as now” from the house log.� �

yesterdayTemp01: {

//the room temperature measured by tempSensor01 of

//yesterday around the same time as now

SELECT: AVG(temperature)

FROM: EnvironmentLog

WHERE: date >= NOW() - 24 HOUR - 5 MIN &&

date <= NOW() - 24 HOUR + 5 MIN &&

sensorName == tempSensor01 }

� �
This log query first obtains data records of tempSensor01 from the environment
house log, where the recorded date is the same time (with 5 minutes margin) of
yesterday. It then calculates the average of the temperature attribute.

The next example shows a log query that returns “the lowest temperature
around the same time of the same day for past three years”.

6 Y. Watanabe et al.

� �
lowestTemp01For3Years: {

//the lowest temperature measured by tempSensor01 around

//the same time of the same date for the past 3 years

SELECT: MIN(temperature)

FROM: EnvironmentLog

WHERE: date.DAY == NOW().DAY &&

date.TIME >= NOW().TIME - 1 HOUR &&

date.TIME <= NOW().TIME + 1 HOUR &&

date.YEAR < NOW().YEAR &&

date.YEAR >= NOW().YEAR - 3 YEAR &&

sensorName == tempSensor01 }

� �

Using the log queries, we define two log contexts: (C1) “it is 5 degree colder
than yesterday” and (C2) “It is the coldest day for the past three years”:� �

(C1) [Colder5DegThanYesterday:

tempSensor01 + 5 < yesterdayTemp01]

(C2) [ColdestDayFor3Years:

tempSensor01 < lowestTemp01For3Years]

� �
We suppose that the log query is dynamically executed when the log context is
evaluated. For instance, when we evaluate (C1), the value of tempSensor01 is
obtained from the temperature sensor, while yesterdayTemp01 is calculated by
executing the log query. Thus, the truth value of (C1) is determined.

The next section describes how to evaluate the log contexts systematically.

4 Implementing System to Derive Log Context

4.1 System Architecture

In this section, we implement a system that can derive the log contexts within
an actual HNS. The system should be able to manage individual log contexts
and queries as efficiently as possible. Also, the created log contexts and queries
should be used by various applications. To achieve the requirement, we design
the system based on a layered architecture, consisting of the following four layers:

1. Application layer: Manages context-aware services with log contexts.
2. Log context layer: Manages log contexts and evaluates each context based

on its context expression.
3. Log query layer: Manages log queries to designated house log.
4. DB connector layer: Connects the database and executes the query.

Exploiting House Log of Home Network System 7

Evaluating Log Context (C1)sd

HouseLog

DB Connector

Layer

LogQuery

Layer

LogContext

Layer

Application

Layer
User

Is it colder than yesterday?

getContext(Colder5DegThanYesteday)

getQuery(tempSensor01)

getQuery(yesterdayTemp01)
doQuery(SELECT AVG(temperature)...)

SELECT AVG(temperature)...

12.5
12.5

12.5

true

evaluate(tempSensor01 + 5 < yesterdayTemp01)

"Yes, it is."

true

7.2

getSensorValue(tempSensor01)

Fig. 3. Sequence diagram for evaluating log context
(C1) “it is 5 degree colder than yesterday.”

 pkg

LogQueryLayer

- updateValue() : boolean

- columnLabel : String

- dbConnector : Connector

- query : String

LogQuery

+ deleteQuery(queryName : String) : boolean

+ addQuery(queryName : String, query : Query) : boolean

+ getAllQuerys() : Query[]

+ getQueryValue(queryName : String) : String

+ getQuery(queryName : String) : Query

- queries : HashMap<String,Query>

QueryManager

CurrentQuery

+ getValue() : String

- valueType : String

- value : String

- description : String

- name : String

Query

LogContextLayer

+ getContext() : boolean

- queries : HashSet

- varMap : HashMap

- expression : String

- description : String

- contextId : String

LogContext

DBConnectorLayer

+ close() : boolean

+ doQuery() : String

+ connect() : boolean

<<interface>>

Connector

- pass : String

- useName : String

- location : String

- resultSet : ResultSet

- statement : Statement

- db : Connection

- instance : MySQLConnector

<<Singleton>>

MySQLConnector

<<Singleton>>

MongoConnector

*

1

get

ApplicationLayer

- description : String

- contextId : String

Context

ContextAwareApplication

CurrentContext

uses

Fig. 4. Class diagram of the de-
veloped system

4.2 Evaluating Log Context within Layers

Figure 3 shows a sequence diagram representing a scenario that evaluates the
log context (C1) “it is 5 degree colder than yesterday” (see Section 3.3). In the
proposed system, the log context is evaluated stepwise through the four layers.

In this scenario, we assume that a user asks an application “is it 5 degree
colder than yesterday?” First, the application layer asks the log context layer
if Colder5DegThanYesterday holds by executing getContext() method. Next,

8 Y. Watanabe et al.

the log context layer tries to update values of all queries (i.e., tempSensor01,
yesterdayTemp01) by asking the log query layer through getQuery()method. In
the log query layer, the value of tempSensor01 is obtained from the temperature
sensor, as it is the current sensor value. Here we suppose that the value of 7.2
is obtained. Since yesterdayTemp01 is a log query, it is delegated to the DB
connector layer to query the designated house log database. In the DB connector
layer, the query is executed for the database. Here, we obtain the value 12.5 as
the result of the query. In the log context layer, the values of tempSensor01
and yesterdayTemp01 are updated to 7.2 and 12.5, respectively. Hence, the
context expression of tempSensor01 + 5 < yesterdayTemp01 is evaluated to
be true. That is, the log context Colder5DegThanYesterday becomes true, and
the answer “Yes, it is” is returned to the user.

Thus, the task of evaluating a log context is coordinated by the four layers
so that the responsibility is well distributed to the layers.

4.3 Detailed Design

Figure 4 shows a class diagram, representing the detailed design of the developed
system. The four layers are enumerated as four packages from the top to the
bottom. In the application layer, ContextAwareApplication is supposed to be
an application providing a context-aware service. The application uses some
Context which is either CurrentContext or LogContext.

The class LogContext implements Context in application layer. Based on
the definition of the log context, it contains contextId, expression and
description as attributes. Moreover, it contains varMap storing pairs of a log
query and its value used to evaluate the expression, and queries specifying a
set of all log queries involved in the log context.

QueryManager in the log query layer manages all the existing queries. It has a
hashmap containing all the queries, and methods to add, get and delete a query
within the hashmap. Query is an abstract class implemented by either LogQuery
or CurrentQuery. CurrentQuery corresponds to a query to the current sensor
value. LogQuery represents the log query, which contains a query statement and
a database connector for the house log. Method updateValue() connects the
database and executes the query statement to update its own value.

Connector in the DB connector layer specifies interface of DB connector.
Various kinds of DBMS are adapted by this interface, so that the log query layer
does not care the difference of DBMS when executing the query. In the figure,
there are MySQLConnector for MySQL, and MongoConnector for MongoDB.

5 Case Study

Using the developed system and actual house log recorded in CS27-HNS, we
conduct a case study to derive the following log contexts:

– (C1’) It is x degree colder than yesterday

Exploiting House Log of Home Network System 9

– (C2’) Today is the coldest day for past y years

The log contexts (C1’) and (C2’) are almost the same as contexts (C1) and (C2)
in Section 3.3, respectively. The difference is that parameter x and y are defined
for variable thresholds, instead of constants, which is just for the experiment.

In the system, log contexts (C1’) and (C2’) are defined as follows:� �
(C1’) [ColderXDegThanYesterday:

tempSensor01 + x < yesterdayTemp01]

(C2’) [ColdestDayForYYears:

tempSensor01 < lowestTemp01ForYYears]

� �
Log query yesterdayTemp01 is the same as the one in Section 3.3. Also, we
define lowestTemp01ForYYears as follows:� �

lowestTemp01ForYYears: {

//the lowest temperature measured by tempSensor01 around

//the same time of the same date for the past 3 years

SELECT: MIN(temperature)

FROM: EnvironmentLog

WHERE: date.DAY == NOW().DAY &&

date.TIME >= NOW().TIME - 1 HOUR &&

date.TIME <= NOW().TIME + 1 HOUR &&

date.YEAR < NOW().YEAR &&

date.YEAR >= NOW().YEAR - Y YEAR &&

sensorName == tempSensor01 }

� �
The house log used in the experiment is stored in MySQL, comprised of 50

million records of sensor data. We measured response time taken for the system
to evaluate each of contexts (C1’) and (C2’), varying the parameters x and y.

As a result of experiment, we confirmed that both contexts were evaluated
correctly by the system. The response time for evaluating both contexts took ap-
proximately 1000 milliseconds. The response time was not increased dramatically
even if we increased the values of x and y. Hence, we consider that the developed
system achieved practical feasibility to some extent, unless the context-aware
services require hard-real-time response.

6 Discussion and Concluding Remarks

In this paper, we have extended the previous framework of context-aware services
in home network system (HNS), so that every context can consider past situa-
tions. Using the house log gathered within HNS, we have proposed log contexts
and log queries to define richer contexts with both current and past situations.

10 Y. Watanabe et al.

We also designed and implemented a system that can derive the log contexts.
The system was designed with four layers. The experimental result showed that
the developed system correctly derived the log contexts with reasonable time.

Our future work is to consider concrete services with the log contexts. We also
plan to conduct an experiment where various users define their own contexts.
Evaluation of context precision and user satisfaction is interesting.

Acknowledgments.

This research was partially supported by the Japan Ministry of Education, Sci-
ence, Sports, and Culture [Grant-in-Aid for Scientific Research (C) (No.24500079,
No.24500258), Scientific Research (B) (No.26280115), Young Scientists (B)
(No.26730155)] and Kawanishi Memorial ShinMaywa Education Foundation.

References

1. M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. Matsumoto, “Constructing
home network systems and integrated services using legacy home appliances and
web services,” International Journal of Web Services Research, vol. 5, no. 1, pp.
82–98, 2008.

2. H. Andy, H. Andy, S. Pete, W. Andy, and W. Paul, “The anatomy of a context-
aware application,” Wireless Networks, vol. 8, no. 2/3, pp. 187–197, 2002.

3. X. Bai, D. White, and D. Sundaram, “Towards an adaptive visualization system
in context-aware environments,” in Context-Aware Systems and Applications, vol.
128, pp. 271–282, November 2013.

4. B. B. Kristensen, “Awareness of entities, activities and contexts in ambient sys-
tems,” in Context-Aware Systems and Applications, vol. 128, pp. 144–156, Novem-
ber 2013.

5. M. Nakamura, S. Matsuo, S. Matsumoto, H. Sakamoto, and H. Igaki, “Applica-
tion framework for efficient development of sensor as a service for home network
system,” in the 8th IEEE 2011 International Conference on Services Computing
(SCC2011), pp. 576–583, 2011.

6. A. Alaa, A. Ammar, M. Mubarak, and A. Vangalur, “Storing and managing context
and context history,” in Context-Aware Systems and Applications. Springer, 2014,
pp. 35–46.

7. H. Jongyi, S. Eui-Ho, K. Junyoung, and K. SuYeon, “Context-aware system for
proactive personalized service based on context history,” Expert Systems with Ap-
plications, vol. 36, no. 4, pp. 7448–7457, 2009.

8. L. Mengmeng, H. Ogata, H. Bin, N. Uosaki, and K. Mouri, “Context-aware and
personalization method in ubiquitous learning log system,” Journal of Educational
Technology & Society, vol. 16, no. 3, pp. 362–373, 2013.

9. A. Sofiane, B. Mokrane, and L. Stéphane, “Context-aware recommender systems:
A service-oriented approach,” in VLDB PersDB workshop, pp. 1–6, 2009.

10. S. Yamamoto, S. Matsumoto, and M. Nakamura, “Using cloud technologies for
large-scale house data in smart city,” in International Conference on Cloud Com-
puting Technology and Science (CloudCom2012), pp. 141–148, taipei, Taiwan. De-
cember 2012.

