
A Rule-Based Framework for Managing
Context-Aware Services Based on Heterogeneous

and Distributed Web Services
Hiroki TAKATSUKA, Sachio SAIKI, Shinsuke MATSUMOTO and Masahide NAKAMURA

Graduate School of System Informatics, Kobe University
1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan

Email: tktk@ws.cs.kobe-u.ac.jp, {sachio, shinsuke, masa-n}@cs.kobe-u.ac.jp

Abstract—With the spread of Machine-to-Machine (M2M)
systems and cloud services, various kinds of data are available
through Web services. A context-aware service recognizes a
real-world context from such data and behaves autonomously
based on the context. However, it has been challenging to
manage contexts and services defined on the heterogeneous
and distributed Web services. In this paper, we propose a
framework, called RuCAS, which systematically creates and
manages context-aware service using various Web services (e.g.
information services, sensor services, networked appliances, etc.).
The framework describes every context-aware service by an ECA
(Event-Condition-Action) rule. For this, an event is a context
triggering the service, a condition is a set of contexts to be
satisfied for execution, and the action is a set of Web services
to be executed by the service. Thus, every context-aware service
is simply managed in a uniform manner. Since the RuCAS is
published as a Web service, it is easy for various applications
to reuse and integrate created contexts and services. As a case
study, RuCAS is applied to creating context-aware services in a
real home network system.

Index Terms—Web services, context-awareness, event-
condition-action rule, home network system, sensor services

I. INTRODUCTION

The recent spread of cloud computing [1] and Machine-to-
Machine (M2M) technologies [2] allows us to acquire various
kinds of data from heterogeneous and distributed systems.
The cloud computing provides computational resource and
data as networked services, whereas the M2M enables devices
to communicate with each other without human interven-
tion. Typical data include temperature, power consumption,
weather, system state, operation of a device. Data from the
cloud or M2M systems can be obtained usually through Web
services or Web-API. Variety of data achieves a context-
aware service [3], which recognizes a real-world context and
behaves autonomously for the context. The context-aware
services implement smarter services, which are sensible for
the environment and human activities.

Traditionally, the context-aware services had been studied
in the field of ubiquitous computing [4] [5]. Many studies
were reported on context acquisition, context reasoning and
utilization, using ubiquitous sensors deployed on local smart
space. Now, the context-aware services must evolve so that
the services can deal with global and distributed contexts

obtained from Web services of heterogeneous systems (e.g.
information services, sensor services, networked appliances,
etc.). However, there are few studies adopting distributed Web
services for creating context-aware services. In our previous
work, we proposed a sensor service framework [6], which
invokes Web services based on contexts with physical sensors.
However, the focus was limited on the sensors only.

Using Web services for inputs and outputs can significantly
improve the functionality and flexibility of the context-aware
services. However, a major challenge lies in managing com-
plex relations among distributed data sources, defined contexts,
and actions caused by the contexts. Unless managed systemati-
cally, the service provision would be quite difficult. Therefore,
it is essential to have a unified framework for managing
advanced context-aware services based on the heterogeneous
and distributed Web services.

In this paper, we present a framework called RuCAS (Rule-
based management framework for Context-Aware Services),
which systematically creates and manages context-aware ser-
vice using various Web services. The framework consists of
five layers: Web service layer, adapter layer, context layer,
action layer and ECA rule layer. The existing Web services
for data acquisition are managed in the Web service layer. The
data acquisition from heterogeneous Web services is adapted
to the standard API in the adapter layer. In the context layer,
every context is defined based on the data obtained via the
adapter. Every Web service that is triggered by a context is
managed in the action layer.

Using these elements, RuCAS defines every context-aware
service as an event-condition-action (ECA) rule. For this, the
event defines a context that triggers a service. The condition
refers to a guard condition to execute the service. The action
defines Web services executed by the service. Thus, every
context-aware service is simply defined and created as a
uniformed rule.

To see the feasibility of the proposed method, we conduct a
case study that applies the RuCAS framework to creating the
context-aware services in a practical home network system.
In the case study, it is shown that a smart air-conditioning
service with environmental sensors can be easily created by a
sequence of RuCAS API.

Hiroki Takatsuka, Sachio Saiki, Shinsuke Matsumoto and Masahide Nakamura

A Rule-Based Framework for Managing
Context-Aware Services Based on Heterogeneous

and Distributed Web Services

978-1-4799-5604-3/14/$31.00 copyright 2014 IEEE
SNPD 2014, June 30-July 2, 2014, Las Vegas, USA

325

II. PRELIMINARIES

A. Context-Aware Service

A context refers to a situational information (e.g. human
activity, environment, etc.) derived from information of sensors
and systems. A context-aware service is a service that auto-
matically detects change of a context and performs appropriate
actions corresponding to the context change. For instance, a
context “Hot” can be derived from information that “the value
of a temperature sensor in a room is higher than 28 degrees”. A
context-aware service “AutomaticAir-conditioning” starts air-
conditioning when the context “Hot” holds.

Traditionally, the context-aware services had been studied
extensively in the ubiquitous computing area. The conventional
studies include a method that uses sensor information to reason
contexts in a smart space [7], and a method that uses smart
phone sensors to reason human behavior [8].

B. Obtaining Data from Web Services

The advancement of ICT (Information and Communication
Technology) and the Internet enables to obtain various in-
formation through the Web. Especially, M2M [2] and Web
services [9] play an important role. The M2M allows various
devices to communicate with each other without human in-
tervention. A background of M2M progress is an acceleration
of communication and evolution of sensor technology. Used
with the cloud computing and big-data processing, M2M is
promising to gather real-world contexts that provide values.

Web service is a technology that provides a feature of a
system as a service on the Web. Web service can be accessed
by a Web standard protocol. The protocol is usually SOAP
or REST over HTTP to exchange XML data between a
service and a client. The XML-based communication over the
Web standard allows developers to integrate distributed and
heterogeneous systems. Thus, modern systems often publish
own API as a Web service (called Web-API) so that external
applications can retrieve information from the system.

In this paper, we focus on modern devices and systems
whose internal information can be retrieved via Web services.
Our interest is how to create and manage context-aware ser-
vices using such distributed and heterogeneous Web services.

C. Home Network System (HNS)

Home Network System (HNS) is a system that provides
value added services by connecting household appliances and
equipment with the home network [10] [11]. In the HNS,
appliances (e.g. TVs, lights, air-conditioners, curtains, fans,
etc.) and sensors (e.g. temperature, humidity, illuminance, etc.)
are integrated to implement various services and applications.

In our laboratory, we have been developing an actual HNS
environment, called CS27-HNS [10]. CS27-HNS extensively
exploits the concept of Service Oriented Architecture (SOA)
in order to integrate heterogeneous devices and sensors. We
encapsulated vendor-specific operations and communication
protocols within Web services. Every device can be operated
by Web-API by SOAP or REST protocol. For instance, to

Motion Sensor

Device

read

normalize
spec.

Motion Sensor

Service

getValue()

608

true

Client Application

Temperature Sensor

Device

read

normalize
spec.

Temperature Sensor

Service

getValue()

402

28C

Service

Layer

Device

Layer

28C true

Fig. 1. Obtaining sensor values by standard interface of SSF

Client Application

Temperature Sensor

Device

read

normalize
spec.

Temperature Sensor

Service

subscribe()

402

28C

register()

Registered Contexts

context: condition

“Cold”: temperature < 5

“Hot” : temperature>=28

:

Context DB

1. Register “Hot” as

temp. >= 28

2. Tell me

when “Hot”.

notify()

3. “Hot” is

true.

Fig. 2. Implementing context-aware service with SSF

change a channel of a TV to 6, a client just accesses a URL
http://cs27-hns/TVService/setChannel?channel=6.

D. Previous Work: Sensor Service Framework [6]

We have previously considered Web services to implement
context-aware services in CS27-HNS. Sensor Service Frame-
work (SSF) [6] is an application framework that easily deploys
environmental sensors (e.g. temperature sensor, illuminance
sensor, etc.) as Web services. In SSF, every sensor service has a
property representing a standard sensor measure. For instance,
a temperature sensor service has temperature property in a
degree Celsius. A client can obtain the value of a property by
getValue() method, as shown in Figure 1.

Moreover, every sensor service observes the value of the
property, and reasons a context based on a registered ex-
pression (contextual condition). The registration of the ex-
pression is conducted by register() method. For instance,
suppose that a client registers a contextual condition Hot:

temperature ≥ 28. The registered condition can be bound
with an arbitrary Web services by subscribe() method.
The sensor service invokes the Web service method when the
contextual condition is satisfied. Figure 2 shows a scenario

326

where a client registers and subscribes a context Hot.
Sensor Mashup Platform (SMuP) [6] constructs advanced

sensor services by integrating multiple sensor services. Sensor
Service Binder [12] provides the easy creation of context-
aware services with SSF for end users.

The above previous methods extensively focused on imple-
menting sensor as a service. Thus, using the existing Web
services for context-aware services was beyond their scope.

E. Problem of Creating Context-Aware Services

In the previous methods of context-aware services, every
context is tightly coupled with its data source and actions to
be invoked, which lacks flexibility and reusability. In many
cases, all operations of obtaining data from sensors, evaluating
defined contexts and invoking actions are performed within a
proprietary program. Hence, it is impossible to reuse a context
for another service, or to replace an action with another. In
SSF, a context Hot is managed within a temperature sensor
service. However, it is not obvious to all clients where the
context exists and what happens when Hot becomes true.

As mentioned in Section II-B, we aim to implement context-
aware services using heterogeneous and distributed Web ser-
vices, not limited to the conventional sensors. We need to find
a way to systematically manage individual Web service, con-
texts, and context-aware services, in a loose-coupling manner.

III. RUCAS: FRAMEWORK FOR MANAGING
CONTEXT-AWARE SERVICES WITH WEB SERVICES

A. Overview

To cope with the challenge, we propose a framework, Ru-
CAS (Rule-based management framework for Context-Aware
Services), which creates and manages context-aware services
based on various Web services.

RuCAS supports client applications to acquire information
from heterogeneous and distributed Web services, and to
define and manage contexts based on the information. In
addition, RuCAS defines every context-aware service as an
ECA (Event-Condition-Action) rule, where the event is a
satisfaction of a context triggering the service, the condition is
a guard condition enabling the service, and the action is Web
services to be executed.

By using RuCAS, every context-aware service can be uni-
formly described by a rule, which combines defined contexts
and actions. Thus, RuCAS achieves loose coupling of Web
services as a source of contexts, contexts defined with the data
sources and context-aware services with actions. This enables
flexible creation and management of context-aware services.

B. Event-Condition-Action (ECA) Rule

The ECA rule is an important design through of RuCAS,
which defines every context-aware service as a set of [Event,
Condition, Action]. In general, a context-aware service can
be described by a rule that “when a context becomes true,
do something”. Intuitively, the part “when a context becomes
true” corresponds to the event, whereas “do something” cor-
responds to the action in RuCAS.

Do nothing

Event

when

false → true

ECARule

Condition Action

then

false

then

true

Fig. 3. Semantics of ECA Rule

However, the above rule lacks flexibility, since the action
always fires when the context becomes true. Therefore, we
extend the rule a bit such that “when a context becomes true, if
a condition is satisfied, do something”. The part “if a condition
is satisfied” corresponds to the condition in RuCAS. More
specifically, in this paper, we define a context, an event, a
condition and an action as follows.

• A context is a situational information defined by a logi-
cal expression over data obtained from a Web service.
Depending on the value of the data, every context is
evaluated to true or false. A context can be also defined
by a composition of the existing contexts.

• An event is a context triggering the execution of a
context-aware service.

• A condition is a guard condition enabling the execution
of a context-aware service. A condition is defined by one
or more contexts.

• An action is operations executed by a context-aware ser-
vice. An action is defined by one or more Web services.

Then, an ECA rule is defined as follows:
• ECA Rule: Let c1, c2, ... be contexts, and let a1, a2, ...

be invocations of Web services. An ECA rule r is
defined by r = [E : ci, C : {cj1 , cj2 , ..., cjm}, A :
{ak1 , ak2 , ..., akn}], where E is an event, C is a condi-
tion, A is an action. For r, we say “event E occurs” if
the value of context ci moves from false to true. When
E occurs, if all contexts cj1 , cj2 , ..., cjm are satisfied, we
say “r is executed”. When r is executed, all Web services
ak1 , ak2 , ..., akn are invoked.

Figure 3 shows semantics of the ECA rule. An event is
defined by a single context, and occurs when the context
moves from false to true. A condition defines a guard evaluated
when the event occurs, If the condition is not satisfied, no
action is performed. If satisfied, the action is executed to
invoke Web services. For instance, a context-aware service
“when it is hot, if a user is present in a room, turn on an
air-conditioner” can be described by an ECA rule: [E : Hot,
C : {PresentUser}, A : {AirCon.on}].

C. System Requirement of RuCAS

We determine the following requirements R1 to R4 to
implement RuCAS.

327

• R1: the framework should be able to create contexts using
information from the existing Web services.

• R2: the framework should be able to create actions using
an invocation of the existing Web services.

• R3: the framework should be able to create context-aware
services as ECA rules using the contexts and actions.

• R4: the framework should be able to use, update and
delete the created method.

D. Architecture of RuCAS

Figure 4 shows the architecture of RuCAS. In order to
efficiently build ECA rules from existing elements, RuCAS
consists of five layers: Web service layer, adapter layer, context
layer, action layer and ECA rule layer. Each layer creates
and manages elements using features of an underlying layer.
In the ECA rule layer at the top, RuCAS defines every
context-aware service as an ECA rule, by combining existing
elements created in underlying layers. Features of each layer
are described below.

Web Service Layer: The Web service layer manages the
existing Web services used as input or output of context-
aware services. The input Web service is a Web service
that can return a certain value (numeric, Boolean, string,
etc.) for defining a context. Typical examples include the
conventional sensor services, the status of a device, dynamic
Web information (weather, stock price, exchange rate, etc.),
SNS, clock, system logs. The output Web service is a Web
service that can yield an action. Examples include an operation
of home network system (switch on/off, voice announce, etc.)
and a request to an information system or service (send an
email, post a comment to SNS, etc.).

Adapter Layer: To obtain data from a Web service, a client
needs to invoke Web-API and extract the necessary data by
parsing the return value. However, Web-API and the return
value vary from a Web service to another. Therefore, the
adapter layer creates an adapter that normalizes the hetero-
geneous interface. Specifically, every Web-API used to obtain
data is adapted to uniform API getValue().

For example, we can create an adapter TempAdapter,
by using a temperature sensor Web service, say http://

cs27-hns/TemperatureSensorService/getTemperature.
Within RuCAS, TempAdapter.getValue() returns a
temperature by internally invoking the Web service.

Context Layer: The context layer manages all contexts
defined by data from Web services via the adapter layer.
In this layer, every context is defined by context ID and
context expression. The context ID is a label to identify every
context. The context expression is a logical formula, in form
of Adapter.value comp_op const, where comp_op is a
comparative operator and const is a constant value. For
example, to define Hot context to be “the temperature is equal
to or more than 28 degrees”, RuCAS describes it by [Hot:

TempAdapter.value >= 28]. Similarly, to define Humid to
be “the humidity is equal to or more than 70 percent”, RuCAS
describes it by [Humid: HumidAdapter.value >= 70].
Each context can be associated with a refresh interval, by

Adapter

Temperature

AdapterLayer

エアコンON

Adapter

PowerUsage

Event Condition Action

WebServiceLayer

Context

Hot

Context

PowerStable

Action

CoolingOn

ContextLayer

ECARuleLayer

ActionLayer

Context

Hot

Context

PowerStable

Action

CoolingOn

Action

Tweet

Fig. 4. Architecture of RuCAS

which RuCAS periodically evaluates the context expression.
For example, when the refresh interval of Hot is one minutes,
RuCAS obtains a new value from TempAdapter and evaluates
the truth value of Hot every one minutes.

RuCAS can define two types of contexts: atomic and com-
pound. The atomic context is a context directory defined by a
single Web service. The compound context is a context defined
by the existing contexts combined with logical operators (!:
NOT, &&: AND, ||: OR). For example, a compound context
Muggy can be defined by combining Hot and Humid such
that [Muggy: Hot && Humid].

Action Layer: The action layer manages all actions used
in ECA rules. Every action wraps an output Web service of
a context-aware service, and is defined by an endpoint, a
method name, and parameters of the Web service, Each action
is associated with action ID, by which RuCAS invoke the Web
service as an action. For example, we can create an action
CoolingOn, by using an air-conditioner Web service, say
http://cs27-hns/AirConService/on?mode=cooling.
When RuCAS invokes CoolingOn, the Web service is
executed to turn on an air-conditioner with a cooling mode.

ECA Rule Layer: The ECA rule layer defines a context-
aware service as an ECA rule by using contexts in the context
layers and actions in the action layer. An ECA rule can be
created as follows:

1) Define an event by choosing a single context from the
context layer.

2) Define a condition by choosing one or more contexts
from the context layer.

3) Define an action by choosing one or more actions from
the action layer.

The created ECA rule is evaluated and executed by RuCAS,
based on the semantics defined in Section III-B.

E. API of RuCAS

Figure 5 shows the typical API of RuCAS, registering a
new element to a layer. registerAdapter() creates a new

328

RuCAS

+ registerAdapter (adapterid, endpoint, method)

+ registerContext (contextid, type, expression, interval, adapterid)

+ registerAction (actionid, url)

+ registerECA (ecaid, event, condition, action)

Fig. 5. Methods of RuCAS

adapter with adapter ID, endpoint and method of a Web
service. registerContext() creates a new context with
context ID, type to specify atomic (A) or compound (C),
context expression, refresh interval (in msec), and adapter ID
used to obtain data. registerAction() creates a new action
with action ID and URL of a Web service. registerECA()
creates a new ECA rule with ECA rule ID, event given by
a context ID, condition given by a set of context IDs, action
given by a set of action IDs.

Based on the concept of SOA, the above API is deployed
as a Web service so that various clients can easily create
and manage their own context-aware services. For example,
to create TempAdapter mentioned in Section III-D, a client
just accesses the following URL:

http://RuCAS/registerAdapter?adapterid=TempAda
pter&endpoint=http://cs27-hns/TemperatureSensor
Service&method=getTemperature

F. Creating Context-Aware Service with RuCAS

Using RuCAS, we can easily create a context-aware service
by the following four steps:
Step 1 (Creating adapters): Define adapters by register
Adapter() with interesting Web services.
Step 2 (Creating contexts): Using the adapters, define nec-
essary contexts by registerContext().
Step 3 (Creating actions): Define actions by register
Action() with Web services to be executed.
Step 4 (Creating ECA rule): Define an ECA rule by
registerECA() with the created contexts and actions.

IV. CASE STUDY

To demonstrate the proposed framework, we create a smart
air-conditioning service using RuCAS. The definition of the
service is as follows: “when a room becomes muggy, if some
people are present in the room and the room is bright enough,
turn on an air-conditioner and announce the service”. The
service is supposed to be implemented in a real environment of
CS27-HNS (see Section II-C). Using Web services of CS27-
HNS, we create contexts and actions within RuCAS.

Figure 6 shows the outline of service creation. We
create the service as an ECA rule such that [E:

Muggy, C: {SomePeople, Bright}, A: {CoolingOn,
SayCoolingOn}]. In the rule, Muggy is a compound context
defined by Hot and Humid, where Hot is an atomic context
that “temperature is greater than 28 degrees”, and Humid is
an atomic context that “humidity is greater than 70 percent”.
In the condition, SomePeople is an atomic context that

Adapters
Adapters

Event

“Hot”

value > 28

Condition

“SomePeople”

value > 0

Action

CoolingOn

SmartAirConditioningService

“Bright”

value > 700

“Humid”

value > 70

“Muggy”

Hot && Humid

Adapters

ContextContext

Context

Context

Context

Action

If event

happen

If

condition

is true SayCoolingOn

Action

Web Services

Fig. 6. Outline of creating smart air-conditioning service

“the number of people is greater than 0”, and Bright

is that “the illuminance is greater than 700 lux”. Finally,
CoolingOn is an action that “turn on an air-conditioner”,
and SayCoolingOn is an action that speaks “Starting
air-conditioning.” to announce the users.

As seen in Section III-F, we create the service by the
following four steps.

Step 1 (Creating adapters): To create the context, we use
sensor Web services of CS27-HNS, including a temperature
sensor, a humidity sensor, an illuminance sensor. We also use
InOutUserManageService to get the number of people within
the room. Using registerAdapter() of RuCAS, we create
four adapters Temperature, Humidity, Illuminance,

PeopleCounter by specifying parameters in Table I.
Step 2 (Creating contexts): We first create four atomic

contexts Hot, Humid, Bright, SomePeople using the
four adapters Temperature, Humidity, Illuminance,

PeopleCounter, respectively. Then, a compound context
Muggy is created with Hot and Humid. These contexts are
created by registerContext() of RuCAS by specifying
parameters in Table II.

Step 3 (Creating actions): We use the AirCondtioner
Web service and SpeechToText Web service to define
CoolingOn and SayCoolingOn. These actions created by
registerAction() of RucAS by specifying parameters in
Table III.

Step 4 (Creating ECA rule): We create the ECA rule [E:

Muggy, C: {SomePeople, Bright}, A: {CoolingOn,
SayCoolingOn}] using the created contexts and actions.
The ECA rule is created by registerECA() of RuCAS by
specifying parameters in Table IV.

We implemented a prototype of RuCAS, and confirmed that
the smart air-conditioning service works fine in CS27-HNS.
Due to limited space, the details of design and implementation
of RuCAS will be discussed in our future publications.

V. CONCLUSION

In this paper, we have proposed a rule-based framework
RuCAS for creating and managing context-aware services with

329

TABLE I
PARAMETERS OF REGISTERADAPTER()

adapterid endpoint method Description
Temperature http://cs27-hns/TemperatureSensorService getValue Get temperature.
Humidity http://cs27-hns/HumiditySensorService getValue Get humidity.
Illuminance http://cs27-hns/IlluminanceSensorService getValue Get illuminance.
PeopleCounter http://cs27-hns/InOutUserManageService getHeads Get a number of person in the room.

TABLE II
PARAMETERS OF REGISTERCONTEXT()

contextid type expression interval adapterid Description
Hot A value>28 5,000 Temperature Temperature is over 28 degrees.
Humid A value>70 5,000 Humidity Humidity is over 70 percent.
SomePeople A value>0 10,000 PeopleCounter There are people in the room.
Bright A value>700 5,000 Illuminance Illuminance is over 700 lux.
Muggy C Hot&&Humid 5,000 — Hot and Humid are true.

TABLE III
ARGUMENTS OF REGISTERACTION()

actionid url Description
CoolingOn http://cs27-hns/AirConditionerService/on?mode=cooling Turn on the air conditioner.
SayCoolingOn http://cs27-hns/TextToSpeechService?text=starting air conditioning The system says “Starting air conditioning.”.

TABLE IV
ARGUMENTS OF REGISTERECA()

ecaid event condition action Description
SmartAirConditioningService Muggy [SomePeople, Bright] [SayCoolingOn, CoolingOn] Context-aware service to turn on the air conditioning.

distributed and heterogeneous Web services. Using RuCAS,
every context-aware service is uniformly defined by an ECA
rule. Every ECA rule is assembled by a loose coupling of
Web services, contexts and actions, coordinated by five layers
of RuCAS. A case study showed that a practical context-aware
service can be implemented easily by invoking RuCAS API.

Our future work includes implementation of a service
platform of RuCAS and user support tools (e.g. GUI and
manuals). We also plan to conduct an experimental evaluation
of service creation. The service interaction problem [13] is
also an important issue to guarantee the consistency among
multiple user-made services.

VI. ACKNOWLEDGMENTS

This research was partially supported by the Japan Ministry
of Education, Science, Sports, and Culture [Grant-in-Aid for
Scientific Research (C) (No.24500079, No.12877795), Scien-
tific Research (B) (No.23300009)] and Sekisui House, Ltd.

REFERENCES

[1] T. Velte, A. Velte, and R. Elsenpeter, Cloud Computing, A Practical
Approach, 1st ed. McGraw-Hill, Inc., 2010.

[2] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. Johnson, “M2M:
From mobile to embedded internet,” IEEE Communications Magazine,
vol. 49, no. 4, pp. 36–43, 2011.

[3] N. Cohen, J. Black, P. Castro, M. Ebling, B. Leiba, A. Misra,
and W. Segmuller, “Building context-aware applications with context
weaver,” IBM Research Division, pp. 1–12, 2004.

[4] C. Randell and H. Muller, “Context awareness by analysing accelerom-
eter data,” in International Symposium on Wearable Computers, 2000,
pp. 175–176.

[5] H. Gellersen, A. Schmidt, and M. Beigl, “Multi-sensor context-
awareness in mobile devices and smart artifacts,” Mobile Networks and
Applications, vol. 7, no. 5, pp. 341–351, 2002.

[6] M. Nakamura, S. Matsuo, S. Matsumoto, H. Sakamoto, and H. Igaki,
“Application framework for efficient development of sensor as a service
for home network system,” in International Conference on Services
Computing (SCC), 2011, pp. 576–583.

[7] S. Yamamoto, N. Kouyama, K. Yasumoto, and M. Ito, “Maximiz-
ing users comfort levels through user preference estimation in public
smartspaces,” in International Conference on Pervasive Computing and
Communications Workshops (PERCOM), 2011, pp. 572–577.

[8] Y. Chon and H. Cha, “Lifemap: A smartphone-based context provider for
location-based services,” Transactions on Pervasive Computing, vol. 10,
no. 2, pp. 58–67, 2011.

[9] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services, ser.
Data-Centric Systems and Applications. Springer Berlin Heidelberg,
2004.

[10] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. Matsumoto,
“Constructing home network systems and integrated services using
legacy home appliances and web services,” International Journal of Web
Services Research, vol. 5, no. 1, pp. 82–98, 2008.

[11] X. Li and W. Zhang, “The design and implementation of home network
system using osgi compliant middleware,” Transactions on Consumer
Electronics, vol. 50, no. 2, pp. 528–534, 2004.

[12] M. Nakamura, S. Matsuo, and S. Matsumoto, “Supporting end-user
development of context-aware services in home network system,” in
Studies in Computational Intelligence, R. Lee, Ed. Springer, 2012, pp.
159–170.

[13] M. Wilson, M. Kolberg, and E. Magill, “Considering side effects in
service interactions in home automation-an online approach,” Feature
Interactions in Software and Communication Systems IX, pp. 172–187,
2008.

330

