2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing

Implementing Materialized View of Large-Scale
Power Consumption Log Using MapReduce

Yuki Ise, Shintaro Yamamoto, Shinsuke Matsumoto, Sachio Saiki and Masahide Nakamura
Graduate School of System Informatics, Kobe University
1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
Email: {ise, shintaro} @ws.cs.kobe-u.ac.jp, {shinsuke, masa-n} @cs.kobe-u.ac.jp, sachio@carp.kobe-u.ac.jp,

Abstract—Smart city provides various value-added services by
collecting large-scale data from houses and infrastructures within
a city. However, it takes a long time for individual applications to
use and process the large-scale raw data directly. To reduce the
response time, we use the concept of materialized view of database.
For a given requirement of an application, the proposed method
constructs a materialized view for caching the application-specific
data. In this paper, we especially develop a method that uses
MapReduce for large-scale power consumption data stored in
HBase KVS. We conduct an experimental evaluation to compare
the response time between cases with and without the materi-
alized view. As a result, the proposed method with materialized
view is effective especially when application repeatedly access the
same data, or when the application-specific data is derived from
a large set of raw data.

Keywords-large-scale house log, materialized view, high-speed
and efficient data access, MapReduce, KVS, HBase

I. INTRODUCTION

Smart city [1][2] is a next-generation city planning which
strives to improve the efficiency of the city with ICT tech-
nologies. The smart city provides various value-added services
according to large-scale information of houses and infrastruc-
tures within a city. The information includes operation log
of household appliances and equipments, environmental data
such as temperature and humidity, traffic data from roads and
railroads. These are gathered from sensors and system loggers
within the city.

In general, the information gathered from smart city is huge
and wide variety, which is so-called Big data. Our long-term
goal is to construct a universal data platform that can store
and manage such smart city data in an integrated fashion. In
our previous research, we have proposed a logging platform,
called Scallop4SC (Scalable Logging Platform for Smart City)
[3] [4], for managing large-scale log from smart houses within
a smart city. In Scallop4SC, the large amount of house logs
(e.g. power consumption logs) from the smart city are stored in
distributed KVS (Key Value Store) [5]. It provides applications
for various purpose or services such as visualization of power
consumption, discovery of waste and peak-cut, with the logs
through a APL

In general, data range and schema required by individual
applications vary among the applications. For example, a
service visualizing power consumption of home appliances
requires time series data of power consumption for each
appliance. On the other hand, an electric peak shaving service

978-0-7695-5005-3/13 $26.00 © 2013 IEEE
DOI 10.1109/SNPD.2013.60

523

requires the total amount of power consumption of the entire
house. Therefore, each application generally has to search,
process and format the raw data for individual usage. However,
due to the nature of smart city data (i.e., large-scale and wide-
variety), it takes a lot of time for each application to search
and process the raw data every time it requires.

The study aims to propose a method that provides such
large-scale smart city data for various applications effectively.
The key idea is to employ the concept of materialized view
[6] of database. The materialized view is a technology that
caches results of various queries in an actual table in advance,
in order to improve the response time. With this concept, the
proposed method constructs the materialized view beforehand
for a given requirement of an application. We extensively use
HBase distributed KVS [7] to store both the raw data and the
materialized view. The application accesses the materialized
view instead of the raw data, which achieves fast data access.
Note that the smart city data are basically log data that are not
updated. Therefore, we can transform the obtained raw data
into the materialized view immediately. The transformation
from the raw data to the materialized view is performed
with Hadoop/MapReduce[8]. Thus, even if the volume of data
increases much, the scalability is easily assured by adding
computing nodes

In this paper, we evaluate the validity of the proposed
method by especially focusing on the power consumption log.
Specifically, for power consumption logs from 32 appliances
within an actual smart home environment, we construct three
kinds of materialized views (minutely, hourly and daily) us-
ing MapReduce batch processing. We compare the proposed
method with the materialized view and the previous method
accessing the raw data directly. As a result, it is shown
that the proposed method outperforms especially in cases
where the applications repeatedly access the same data, or
the application-specific data is derived from a large set of raw
data.

II. PRELIMINARIES
A. Value-added Services in Smart City

The smart city provides various value-added services,
named smart city services, according to the situation by big
data within a city. Promising service fields include energy
saving, traffic optimization, local economic trend analysis,
entertainment, community-based health care, disaster control

IEEE
computer
® psouety

and agricultural support. Also for each field there are a wide
range of services. For example, typical services in the energy-
saving area are as follows:

1) Power Consumption Visualization Service [9]: The
service collects data of power consumption from smart
house and visualizes the use of energy from various
viewpoints (e.g. houses, towns, devices, current power
consumption, passage of past power consumption, etc.).
This service is intended to raise user’s awareness of
energy saving by intuitively showing the current and past
usage of energy.

Wasteful Energy Detection Service [10]: This service
automatically detects wasteful electricity and notifies
users using power consumption data and sensors data
in a smart house. Furthermore, a user can review the
detected waste occured in the past.

Peak Shaving (Peak Cut) Service [11]: This service
reduces the maximum electric power usage in a house
and a community by watching the usage of electricity.
When the usage exceeds a pre-defined threshold, the ser-
vice automatically stops or postpone energy-consuming
operations.

The data for smart city services are gathered from various
objects and systems within the city. Therefore, volume and
variety of the data become quite large. Velocity (i.e., freshness)
of the data is also imprtant to to reflect real-time or latest
situations and contexts. Thus, the data for the smart city
services is truly big data.

There exist services and applications that collect data from
city and house. Most of the conventional applications store
only necessary data with appropriate granularity, due to lim-
itation of storage. However, such the limitation is recently
relaxed significantly by cloud computing technologies. Thus,
it is now possible to store various kinds of data as they are, and
to reuse the raw data for various purposes. We are interested in
constructing a data platform to manage the big data for smart
city services.

B. Scallop4SC

In our previous research, we have developed a data platform,
called Scallo4SC, which stores large-scale house log from
the smart city [3][4]. Figure 1 shows the architecture of
Scallop4SC. Various information within each house is col-
lected from a logger deployed in the house. The data is then
sent to Scallop4SC via a network, and is stored in HBase
as the house log. The stored house logs are processed by
Hadoop, distributed processing. Configuration information of
the overall smart city is stored in MySQL relational database.
The house logs are provided for external smart city services,
via Scallop4SC APL

In the current prototype of Scallop4SC, we are gathering
power consumption data from 32 appliances deployed in our
actual smart home environment. The data is collected every
three seconds. Therefore, 640 records per minute, 38,400
records per hour and 921,600 lines per hour are inserted to
HBase. Thus, even the house log for the power consumption

2)

3)

524

Scallop4SC —

0 Energy
AR q Distributed Distributed Visualization
Hﬂ Proiesiing KVS l —
£ ’ ~ .| Waste
q m %w@;a/ API h /: - Detection

HERSE
Configuration - g RL ‘
Data —iceces gz:ting
Fig. 1. Scallop4SC

only can be big data. Scapllop4SC are gathering other kinds
of data, so the entire set becomes enormous.

C. Challange in Using Large-Scale Data

In Scallop4SC, the large-scale raw data of house log are
accessed by various application. However, the necessary data
range and schema vary from one application to another. The
Scallop4SC API currently supports low level features for data
acquisition only. Thus, each application has to process the
obtained data by itself for desirable range and schema.

However, if the required data is derived from a large amount
of raw data, then the application suffers from large processing
time. Moreover, if the application repeatedly requires the same
data, the application has to repeat the same calculation to
the large-scale data, which is quite inefficient. To solve these
problems, we need to develop an efficient method that can
provide the required data for the individual applications.

III. PROPOSED METHOD
A. Architecture

To cope with the challenge, we here introduce a concept of
materialized view of database systems. The range and schema
of data required by individual applications can be considered
as view, which looks up the raw data based on a certain
condition. The ordinary view of database is represented as
a query. Hence, the data is dynamically retrieved from the
raw data when the view is accessed. On the other hand, the
materialized view statically caches the query results in a table
in advance. Thus, applications can access the cached data
quickly.

Figure 2 shows the new architecture of Scallop4SC. In the
proposed method, a developer of an application gives the new
Scallop4SC a specification of required data, which is referred
as Data Spec. Next, a component factory of Scallop4SC
interprets Data Spec. and creates a MapReduce batch program,
which transforms the raw data into application-specific data.
Then, Scallop4SC executes the batch program, and generate
a materialized view with API. The application accesses the
API to quickly retrieve necessary data. The batch program
is periodically executed on Hadoop distributed processing
system. Note that the house log is not updated basically.
Therefore, the raw data can be transformed at any timing.

Our long-term goal is to implement the whole architecture
of Figure 2. However, in this paper we mainly develop a por-
tion surrounded by a dashed box. Specifically, we first develop

Scallop4SC (Extended Version)

fEmlossei)
ﬁ logger 4

Distributed
KVS

Distributed
5ro$es§ing
Y s

create

/aste
etection

B e

Configuration ys&

Data

Fig. 2.

a design method of the materialized view. We then conduct
preliminary evaluation of the proposed approach, by using
a static MapReduce program for actual house logs. In this
paper, we especially focus on the using power consumption
log collected from our smart house environment.

B. Raw Data Stored in Scallop4SC

Before considering the design of the materialized view, we
briefly explain the raw data stored in Scallop4SC. In order to
store a variety of large-scale logs, Scallop4SC does not have
rigorous data schema. Instead, it manages every data by a pair
of key and value. All these pairs are stored in HBase.

Table I shows an example of power consumption logs
obtained in our laboratory. A key of each row (called row key)
is represented by a concatenation of “date and time (when
the log is acquired)”, “type (for what the log is)”, “home
(where the log is acquired)”, and “device (from what the log is
acquired)”. The row key starts with date and time, since most
batch processes are triggered by the date and time. Then, type,
home and device are followed as they are arranged from coarse
to fine granularity.

For each row, there are two column families: data rep-
resenting the data value, and info representing meta-data
explaining the data value. For example, the first row in Table
I shows that the log is taken at 22:00:10 on January 18, 2013,
and that the house ID is ¢s27 and log type is Energy, and that
the devicelD is pow001. The value of power consumption is
“140.3 W”. Each attribute of info is stored in an independent
column, and the application can refer to those values. A
row also contains additional information such as unit and
location.

C. Design of Materialized View for Power Consumption

Suppose now that there is an application that requires
device-wise power consumption in a daily unit, from the raw
data in Table I. Theoretically, the application should retrieve all
the raw data matching given date and device, and calculate
the total sum of data. However, if the number of devices is
large or the interval of data sampling is short, the number of

525

Extended Scallop4SC

rows to be retrieved becomes huge. Accordingly, the overhead
of the calculation becomes expensive. Furthermore, if the
application requests the same data repeatedly, it is inefficient
for the application to perform the same calculation many times.

Therefore, we consider a materialized view of this ap-
plication, in which the device-wise power consumption is
calculated beforehand by a batch process. We implement the
view as a HBase table, whose row key is device.date
(e.g., pow001.2013-01-18), and the value is the total of power
consumption. Similarly, if another application requires hourly
power consumption for each device, we create a HBase table
whose row key is device.dateThour (e.g., pow001.2013-
01-18T15). Generalizing the above idea, the proposed method
constructs a materialized view as a HBase table as follows:

o Row Key: For each materialized view, a row key should
be define so that the key clearly characterizes each
row in the view. The key should be constructed by a
concatenation of attributes of meta-data found in the
row data. A row key specified in the material view is
called aggregation key, since the key generally aggregates
multiple raw data.

Value: A value should correspond to a row key. The
value is calculated from the raw data according to a
condition of the aggregation.

The reason why using HBase for representing a materialized
view is that the view should play a role of data cache, which
quickly returns a value for a given key. It also reflects a
requirement that we want to store application-specific and
heterogeneous data without strict data schema.

For example, let us consider three applications which re-
quire device-wise power consumptions in minutely, hourly and
daily basis, respectively. For these applications, we construct
three kinds of materialized view: MinutelyView, Hourly View
and DailyView. In the following, we use YYYY-MM-DD to
represent year, month and day, respectively. Similarly, hh and
mm denotes hour and minute, respectively.

a) MinutelyView: It represents power consumption per

minute for every device. Hence, we construct a HBase
table as shown in Table II(a).

TABLE I

RAWDATA
Row Key Column Families
info: data:
(dateTtime.type.home.device) date time device | home | location type unit
2013-01-18T22:00:10.Energy.cs27.pow001 | 2013-01-18 | 22:00:10 | pow00l | cs27 s101 Energy | W 140.3
2013-01-18T22:00:10.Energy.cs27.pow002 | 2013-01-18 | 22:00:10 | pow002 | cs27 s101 Energy | W 0
2013-01-19T12:30:00.Energy.cs27.pow001 | 2013-01-19 | 12:30:00 | pow001 | cs27 s101 Energy | W 120.7

TABLE II
MATERIALIZED VIEW(PER MINUTE,PER HOUR,PER DAY)

(a) MinutelyView

Aggregation Key

Column Families

(devicelD.YYYY-MM-DDThh:mm)

Minutely Consumption

pow001.2013-01-18T15:30
pow002.2013-01-18T15:30
pow001.2013-01-19T16:00

687.1
0
560.6

(b) HourlyView

Aggregation Key

Column Families

(devicelD.YYYY-MM-DDThh)

Hourly Consumption

pow001.2013-01-18T15
pow002.2013-01-18T15
pow001.2013-01-19T16

41363.7
0
38393.8

(c) DailyView

Aggregation Key

Column Families

(devicelD.YYYY-MM-DD)

Daily Consumption

pow001.2013-01-18 588072.6
pow002.2013-01-18 0
pow001.2013-01-19 633055.6

o Aggregation Key : [deviceID.YYYY-MM-DD T
hh:mm]
o Value : power consumption of the device consumed

within that minute.

b) HourlyView: It represents power consumption per hour
for every device, Hence, we construct a HBase table as
shown in Table II(b).

o Aggregation Key : [devicelD.YYYY-MM-DDThh]
o Value : power consumption of the device consumed
within that hour.

c) DailyView: It represents power consumption per day
for every device, Hence, we construct a HBase table
as shown in Table II(c).

o Aggregation Key : [devicelD.YYYY-MM-DD]
o value : power consumption of the device consumed
within that date.

D. Using MapReduce to Create Materialized View

We use MapReduce as an efficient method of creating
a materialized view from the raw data. MapReduce is a
framework of distributed processing for large-scale data set. It
basically consists of a map process which creates the specified
set of a key and a value from each input data, and a reduce
process which aggregates the value having the same key.

For constructing the materialized view, we implement a
batch program performing the following four phases.

1) Create phase: Create a new HBase table view for the
materialized view.

526

2) Scan phase: Determine the range of the raw data based
on a given Data Spec, and retrieves the data.

3) Map phase: For each record d of the retrieved data,
make an aggregation key k£ by using meta data of d.
Then, extract a necessary value v from d. Finally, output
the key-value (k,v).

4) Reduce phase: For key-values (k,v1), (k,v2)
sy (K,vp,) with the same key k, calculate a value
val = v; ® v2 ® ... ® v,, where ® represents an
operation specified in Data Spec. Then, output the
key-value (k,val).

5) Put phase: Put (k,val) in view.

For example, let us create DailyView on 2013-01-18 shown
in Section III-C. First, the scan phase retrieves all data records
starting with 2013-01-18. In the map phase an aggregation key
is generated in the form of “devicelD.YYYY-MM-DD”. From
each record, the values of devicelD and date are obtained from
info meta-data, and the values are concatenate to generate
a key. Also, the value obtained from data is specified as a
value corresponding to the key. In the reduce phase, we apply
add operation (+) for the values with the same aggregation
key, in order to calculate the total sum of device-wise daily
consumption. Finally, in the put phase, each pair of the
aggregation key and the total sum is inserted in DailyView.

Distributed processing of the MapReduce processing can be
carried out using two or more computing nodes on Hadoop.
Therefore, for large-scale raw data, efficient construction of
materialized view is achieved by increasing computing node.

E. API for Accessing Materialized View

We consider API by which applications access the con-
structed materialized view. By design of the materialized view,
the API can be implemented by a simple program performing
the following tasks:

1) Make an aggregation key based on parameters given by
an application.

2) Pass the key and obtain the corresponding value.

3) Return the value to the application.

For example, let us consider a case that an application re-
quests a power consumption of the device “pow005” between
10am and 11am on January 18, 2013. The application specifies
(pow005, 2013-01-18, 10) as parameters to the API. Then, the
API constructs a key “pow005.2013-01-18T10”, and retrieves
the data from HourlyView. Finally, the API returns the value
to the application.

IV. EXPERIMENTAL EVALUATION
A. Overview

We conduct an experimental evaluation using power con-
sumption logs obtained from a real smart home to see practical
feasibility of the proposed method. The objective here is to
evaluate the following two metrics.

« E1 (Response Time): How fast will applications be able

to access the data by using a materialized view?

« E2 (Batch Processing Time) : How much time is taken

for creating a materialized view?

To evaluate E1, we compare the response time of two cases:
(1) an application accesses the raw data directly as in the
previous method, (2) an application accesses a materialized
view as in the proposed method. To evaluate E2, we then
measure the time taken for a batch program to create a
materialized view from the raw data.

B. Environment of Experiment

The raw data used in experiment is power consumption logs
gathered within an actual smart home environment CS27-HNS
developed by our research group. The logs are taken every
3 seconds from 32 appliances, and are stored in HBase of
Scallop4SC. From the raw data, we create three kind of mate-
rialized views: Minutely View, HourlyView, and DailyView as
exaplained in Section III-C.

The MapReduce batch program has been implemented
a static Java program using MapReduce. The used
libraries include hadoop-core-1.0.3.jar and
hbase-0.94.2.jar. The program was executed on
HBase installed in a Hadoop Linux cluster (Pentium4,
3.0GHz, 2GB x 8 nodes).

C. Experiments

To evaluate the metrics E1 and E2, we have conducted two
kinds of experiments.
Experiment 1: Comparison of response time

In this experiment, we suppose that an application requests
device-wise power consumption based on three granularity:
minitely, hourly and daily. We also suppose that the request is
received through the following API.

double getMinutelyConsumption (device, date, time);
double getHourlyConsumption (device, date, time);
double getDailyConsumption (device, date);

For each of the above API, we have implemented two
versions of programs: one is with the conventional method
which accesses the raw data directly, while another is with the
proposed method which accesses the materialized view (i.e.,
Minutely View, Hourly View and DailyView). We measured the
execution time by providing the random parameters to each
APIL. We executed each API 100 times and measured the
average time.

Experiment 2: Measurement of batch processing time
In this experiment, we measure the execution time of
the MapReduce batch programs that create MinutelyView,
HourlyView,and DailyView from the raw data. For Minute-
lyView, we measured the time for calculating the total power

527

TABLE III
EXPERIMENT1: COMARISON OF RESPONSE TIME (SEC.)

API getMinutely() getHourly() getDaily()
direct access 0.320 16.943 408.277
view access 0.008 0.002 0.001

TABLE IV

EXPERIMENT2: TIME FOR CREATING MATERIALIZE VIEW (SEC.)

MinutelyView HourlyView DailyView
CPU time 130.123 220.682 370.183
of records processed 640 38,400 921,600

consumption of one minute. Similarly, for HourlyView and
DailyView, we measured the time for calculating consumption
of one hour and one day, respectively.

D. Result

Table III shows the result of Experimentl. In the table,
the row “direct access” represents the response time of the
API that accesses the raw data directly (i.e., conventional
method). The row “view access” represents the one with the
proposed materialized view. It can be seen in the table that
all cases of “view access” significantly outperform those of
the conventional “direct access”. It can be also shown that
“view access” takes approximately constant response time,
whereas “direct access” has longer response time as the size
of aggregated data increases.

Next, Table IV shows the result of Experiment2. CPU
time represents the execution time taken for the MapReduce
program to construct a materialized view. The next row shows
the number of records of raw data that are aggregated by
the MapReduce program. It can be seen in the table that the
execution time grows significantly as the number of the records
processed.

V. DISCUSSION
A. Scalability of Data Access

Using the experimental result in Table III, we here discuss
the scalability with respect to the data access. In the conven-
tional API of “direct access”, 640, 38,400 and 921,600 records
are respectively aggregated during runtime in getMinutely(),
getHourly() and getDaily(). The response time significantly
increases in the direct proportion of the number of records.
Thus, the conventional method is poor in scalability to the
number of records to be aggragated.

On the other hand in the proposed API of “view access”,
each API achieves very quick response time of around several
milliseconds, since all the application data are prepared in
advance. Thus, the proposed method is excellent in scalability
for the data access. It is interesting to see that getMinutely()
takes the longest response time. We consider that this is related
to the number of rows in MinutelyView, which is the largest
among the three view. If the granularity of the aggregation is
small, then the number of aggregated groups becomes large.
As a result, the number of rows in the materialized view
becomes large, which yields a certain overhead to look up.

B. Cost of Batch Processing

Next, we discuss a cost of creating a materialized view,
using Table IV. The time required for batch processing be-
comes larger according to the number of records processed.
The reason why the execution time is not exactly in proportion
to the number of the records is in the overhead of MapReduce.
Even MinutelyView which processes quite a small number of
records is suffer from a significant overhead. The result of
Experiment 2 shows that more than one minute is taken to
process the raw data of one minute. Therefore, for such small
cases, it is not a good idea to use the expensive MapReduce.

The number of records processed by MapReduce generally
depends on Data Spec. given by the application. We have to
guarantee a certain scalability for Data Spec. that requires
large-scale data aggregation. Fortunately, MapReduce is good
to scale out for the large-scale dataset by increasing the
number of computing nodes. By controlling execution timing
and data range of each batch processing, it would be possible
to create the materialized view more efficiently. Discussion of
efficient batch operations is left to our future work.

C. Selection Criteria of Direct Access or View Access

In order to use the proposed method, it is necessary to create
a corresponding materialized view beforehand. Therefore, if an
application requires a small number of data, or the application
does not frequently access the aggregated data, it would be
better to choose the conventional method with the raw data.

We here discuss the total performance by integrating the
cost of the view generation and the response time for data
access. Specifically, from the results of Experiments 1 and 2,
we discuss which of the conventional or proposed methods is
faster. This can be a selection criteria of the proposed method.

Let v denote the response time of the proposed “view
access”, and d denote the response time of the conventional
“direct access”. Also, let b denote the execution time of the
MapReduce batch program, Suppose now that an application
accesses the data n times. Then, the total execution time can
be expressed as follows.

nxd
b+nxwv

previous method (time)

proposed method (time)

As for b, v and d, we use empirical values obtained in
the experiment. For each of getDaily(), getHourly() and get-
Minutely(), we calculate n such that the total time of the
proposed method is shorter than the previous method. As a
result, we obtain the following conditions: [getDaily(): n > 1],
[getHourly(): n > 14], [getMinutely(): n > 418]. For example,
if the application uses getHourly() more than 14 times, it is
faster to use the proposed method than the previous method.
Thus, the proposed method with the materialized view is
especially efficient when the application repeatedly access the
same API. The same thing is true when the application-specific
data is derived from a large set of the raw data. On the other
hand, when an application does not use the API frequently, or
a materialized view requires small data set, it would be better
to use the conventional method without expensive MapReduce.

528

VI. CONCLUSION

In this paper, we proposed a method that allows various
applications to efficiently use large-scale data. The method
is specifically applied to a data platform, Scallop4SC, for
the large-scale smart city data. In the proposed method,
effective data access is achieved by using the materialized
view, constructed based on data specifications of individual
applications.

We also implemented the proposed method using HBase
with Hadoop/MapReduce. Using power consumption data
gathered from an actual smart home, we evaluated the response
time of data access and the execution time of view generation.
As a result, it is shown that the proposed method with the
materialized view is efficient especially when the application
repeatedly accesses the same data, or when the application-
specific data is derived from a large set of the raw data. Our
future work include the automatic generation of MapReduce
batch program from Data Spec., as well as an efficient oper-
ation method of the batch.

ACKNOWLEDGMENT

This research was partially supported by the Japan Ministry
of Education, Science, Sports, and Culture [Grant-in-Aid for
Scientific Research (C) (No0.24500079), Scientific Research
(B) (N0.23300009)], and Kansai Research Foundation for
technology promotion. The authors thank to Prof. Kenji
Hatano, Doshisha University, and Prof. Jun Miyazaki for
fruitful discussion.

REFERENCES

[1] R. G. Hollands, “Will the real smart city please stand up?” City: analysis
of urban trends, culture, theory, policy, action, vol. 12, no. 3, pp. 303—
320, 2008.

A. Mahizhnan, “Smart cities: The singapore case,” Cities, vol. 16, pp.
13-18, 1999.

S. Yamamoto, S. Matumoto, and M. Nakamura, “Using cloud technolo-
gies for large-scale house data in smart city,” in In International Con-
ference on Cloud Computing Technology and Science (CloudCom2012),
December 2012, pp. 141-148.

K. Takahashi, S. Yamamoto, A. Okushi, S. Matsumoto, and M. Naka-
mura, “Design and implementation of service api for large-scale house
log in smart city cloud,” in In International Workshop on Cloud
Computing for Internet of Things (IoTCloud2012), December 2012, pp.
815-820.

S. M., “Key-value stores: A pracitical overview,” in Computer Science
and Media. Ultra-Large-Sites, vol. SS09, 2009, pp. 1-21.

I. S. Mumick, “The rejuvenation of materialized views,” in International
Conference on Information Systems and Management of Data (CISMOD
95), vol. 1006, 1995, pp. 258-264.

A. Khetrapal and V. Ganesh, “Hbase and hypertable for large scale
distributed storage systems,” 2006.

D. Jeffrey and G. Sanjay, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

City of Yokohama, “Yokohama smart city project,” http://www.city.
yokohama.lg.jp/ondan/english/.

K. Kitaoka, H. Seto, S. Matsumoto, and M. Nakamura, “On identifying
energy wasting behaviors from device status logs in home network
system,” in /EICE, vol. 110, no. 450, 2011, pp. 37-42.

Y.-X. Lai, J. J. P. C. Rodrigues, Y.-M. Huang, Hong-GangWang, and
C.-F. Lai, “An intercommunication home energy management system
with appliance recognition in home network,” in Mobile Networks and
Applications, vol. 17 Issue 1, 2012, pp. 132-142.

[3]

[4

[10]

[11]

