
Visualizing Software Metrics with Service-Oriented
Mining Software Repository for Reviewing Personal

Process
Yasutaka Sakamoto, Shinsuke Matsumoto, Sachio Saiki and Masahide Nakamura

Graduate School of System Informatics, Kobe University
1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan

Email: gen@ws.cs.kobe-u.ac.jp, {shinsuke, masa-n}@cs.kobe-u.ac.jp, sachio@carp.kobe-u.ac.jp

Abstract—We have proposed a framework named SO-MSR:
service-oriented mining software repository, which applied ser-
vice oriented architecture to MSR. Following the SO-MSR,
we have developed a web service, named MetricsWebAPI, for
metrics calculation from a variety of software repositories and
a variety source codes. In this paper, we develop and propose
MetricsViewer, which is client of MetricsViewer and is a web
application to support personal process improvement. Met-
ricsViewer provides an interactive user interface for repository
file exploring. Moreover the MetricsViewer visualizes change of
source code metrics to support overhead view of personal process.
End user can improve their development activities based on
software repository data without MSR specific knowledge by
using MetricsViewer. We have conducted a pilot study to evaluate
the effect of proposed system for personal process improvement.

Keywords-MSR, Service-Oriented Architecture, Software Met-
rics, Visualization, SO-MSR, MetricsViewer

I. INTRODUCTION

Mining Software Repository (MSR) is a research field
where developers analyzes a software repository by using
some data mining techniques. By conducting the MSR, de-
velopers can conduct empirical and evidence-based process
improvement.

In our previous work[1], we have previously proposed
a MSR framework, “Service-Oriented Framework for MSR
(SO-MSR)”, which applied the concept of SOA (Service-
Oriented Architecture) to MSR. In the SO-MSR, various
MSR procedures and techniques are wrapped as an abstracted
service. End user can easily get the mining results of their own
software repository without some mining specific knowledge.
Furthermore, the concept of SOA allows service composition.
MSR practitioners can easily extend the MSR techniques by
combining the MSR services and other third-party services.

We have also proposed and developed a concrete Web
service[2] named MetricsWebAPI which follows SO-MSR[1].
MetricsWebAPI provides measurement results of some variety
of source code metrics from a user’s software repository. The
system wraps detailed mining techniques such as building an
AST (Abstract Syntax Tree) and natural language processing
to commit logs. Also the system abstracts the difference of
software repositories (SVN, CVS and Git) and the difference
of programming language. End user can get some variety of

source code metrics without regard to the differences by spec-
ifying a minimum requirement to conduct the measurement.

The next challenge of MetricsWebAPI is to develop and
provide a GUI client. Web service can be accessed from any
programming languages and from any platforms because it
provides XML-based web APIs. Hence each service easily
combine with other services, web service has a strong advan-
tage of its expandability. However these advantages are just
for developers. User-friendly clients such as GUI client are
necessary for end users to provide interactive and intuitive
MSR.

There is wide variety of purposes of MSR techniques.
MSR clients also vary for the MSR purposes. For example,
a client which visualizes evolution of software may support
self process improvement by looking back their development
activities. Other examples are: a client to visualize the devel-
opment relationship between developers and source codes; a
client to recommend refactoring; a client to identify system
vulnerabilities based on its modification history.

In this study, we focus on supporting personal process
improvement as a application of MSR. We propose a Web ap-
plication, named “MetricsViewer”, which provides interactive
file exploring in a software repository and visualizes change
of some software metrics. MetricsViewer helps developers to
have a bird’s-eye view of their development activity without
MSR specific knowledge. The system is composed by Met-
ricsWebAPI and Google Chart API. Google Chart API is a
Web service for generating graph objects provided by Google
with minimum plotting parameters. We also conducted an
preliminary experiment to show the effect of the system. In
the experiment, four subjects used the proposed system and
evaluated the system in terms of whether the system is useful
to personal software improvement.

II. PRELIMINARIES

A. Mining Software Repository (MSR)

MSR is to help software development with the technique of
data mininig by analyzing development historical data from
software reporitories such as version control system and bug
tracking system and so on. Various studies have been repoted
in the MSR research field[3], [4], [5].

978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.96

557978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.96

549

2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing

978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.96

549

CVS SVN Bugzilla Redmine

RCS Repository
(Revision Control System)

BTS Repositories
(Bug Tracking System)

RCS
Service

log()
update()

BTS
Service

getBugList()
getBugPriority()
getBugFixedDate()

checkout() RCS
Service

log()
update()

BTS
Service

getBugList()
getBugPriority()
getBugFixedDate()

checkout()

repository

service

service API

End users

SOAP / REST

...

Metrics
Service

getCycComplexity()
getCodeChurns()

getSloc()

getCodeChurns()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

Metrics
Service

getCycComplexity()
getCodeChurns()

getSloc()

getCodeChurns()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

getSloc()
getCycComplexity()
getCodeChurns()

Statistic
Analysis
Service

Statistic
Analysis
Service

Statistic
Analysis
Service

Statistic
Analysis
Service

Statistic
Analysis
Service

Statistic
Analysis
Service

Correlation()
Prediction()
Correlation()
Prediction()
Correlation()
Prediction()
Correlation()
Prediction()

Statistic
Analysis
Service

Statistic
Analysis
Service

Statistic
Analysis
Service

Statistic
Analysis
Service

Statistic
Analysis
Service

Statistic
Analysis
Service

Correlation()
Prediction()
Correlation()
Prediction()
Correlation()
Prediction()
Correlation()
Prediction()

Other
Services

Fig. 1. Architecture of SO-MSR

Source code metric is one of the well-known and widely-
studied approach in the MSR field[6], [7]. The metric is
calculated by source code and/or its change history. Developer
or researcher can conduct a typical data mining analysis by
using some software metrics. As one of typical practical uses
of the metric, there are the number of code, complexity, C&K
metrics of source code and the contribution of developers and
so on.

B. Service-Oriented MSR (SO-MSR)

SO-MSR is a MSR framework which applied concept
of Service-Oriented Architecture (SOA). Figure 1 shows an
architecture of SO-MSR. In this figure, CVS and SVN are
illustrated as repositories of version control system. The
difference of accessing methods between the reporitories is
wrapped by RCS Service. RCS Service provides abstracted
access APIs which commonly used in revision control systems
such as checkout() and log(). Repositories of bug track-
ing system are also wrapped by BTS Service. BTS Service
supports some APIs related to bug tracking system such as
getBugList() and getBugFixedDate(). By integrat-
ing these two services, a service for metric measurement,
named Metrics Service, can be provided. In the same manner,
Static Analysis Service, which supports statistical analysis,
is developed by using Metrics Service. As shown in this
figure, SO-MSR have an advantage for expandability of MSR
techniques.

C. MetricsWebAPI

As one of the concrete service of SO-MSR, we have
developed MetricsWebAPI. MetricsWebAPI is a web service
which measures variety of software metrics. Three types of
measurable software metrics are shown as below.

∙ Code metrics: (e.g., source lines of code, cyclomatic
complexity and C&K metrics)

∙ Change metrics: (e.g., number of code churn and number
of revisions)

∙ Developer metrics: (e.g., number of developers and a list
of developers)

�������		
���
�	����������
�������	����
���

	������
���		
���
�	��	����
��

����������

(a) registerRepository() API

�������		
���
�	����������
����	��������
��

�������������� �!�

"��	�����#

"��!����$#

"��!�%#&'("���!�%#

"%�	�#)(�(*(+*),"�%�	�#��

"��	���#��$"���	���#

"����#�(("�����#

"���!����$#

"��!����$#

"��!�%#&'+"���!�%#

"%�	�#)(�(*(+*-("�%�	�#��

"��	���#
���*$"���	���#

"����#��)"�����#

"���!����$#

���

"���	�����#

(b) getSlocs() API

Fig. 2. Example of call and response of MetricsWebAPI using cURL

Figure 2 represents two examples of usage result of Met-
ricsWebAPI using cURL command. In the Figure 2(a), a
developer’s repository is registered to MetricsWebAPI by us-
ing registerRepository() API and the system returns
repository id “1”. Figure 2(b) calls getSlocs() API with
the registered repository id “1” and target source code name
“PlayHNS.java”. As a result, the system returns measurement
results with XML format. This xml represents that the “Play-
HNS.java” revised at revision id “690”, “698” and so on. The
first revision was commited by developer “gen” at 27th Augst
2010 and its total lines of code was 100. As described in this
figure, MetricsWebAPI returns measurement results for each
revision with meta information of each revision.

In this way, XML-based protocol (SOAP/REST) is used as
a service interface protocol. So we can easily cooperate with
other services and expect to extend to various service like a
bug prediction service with BTS service.

D. Challenge

One of the problems of MetricsWebAPI is to develop
a client for end-users which has the interactive graphical
interface. As you can see in Figure 2, XML-based protocol
is used as a communication language between the machines.
So it is difficult for end-users to understand what the service
response means and the XML protocol is not assumed that
directly used by humans. In order to support end-users or
software developers use MetricsWebAPI without MSR specific

558550550

knowledge, it is necessary to develop a client which has an
graphical user interfacce and visualization features.

This client can be provided for various software metrics
usages and its purposes. First, from the perspective of process
improvement, there is an example of a clinet which visualizes
changes of some software metrics collected by MetricsWe-
bAPI. This client helps users to intuitively and graphically
look back their development activities. Other examples include
a client for visualizing a relationship between developers and
source codes. This client supports understand a developer who
has specific knowledge for a source code that should be fixed.
The client also used in bug assignment process. Moreover,
it is thought that we can provide a client to help software
product improvement. The client identifies a buggy or less-
vulnerability code and finds a code that should be refactored.

III. METRICSVIEWER

A. overview

In this paper, we focus on supporting self process improve-
ment as one of the some clients of MetricsWebAPI. So, we
develop a GUI client named MetricsViewer. MetricsViewer
is a web application for visualizing software evolution rep-
resented by source code metric and process metric. This
system is implemented as a mashup application combinating
MetricsWebAPI and Google Chart Tools. MetricsViewer just
requires an internet browser and network connection. User can
easily look back their own development activities from any
computer environment.

B. Requirements

When we developed the proposed sytem, we difined two
requirements for our own review based on source code metrics.

∙ Requirement 1 (R1): MetricsViewer provides interac-
tive operation to search a file in a repository easily.

∙ Requirement 2 (R2): MetricsViewer shows the visual-
izing result of metrics and other information which help
our own review about a selected file.

As a lot of source codes and documents are stored in a
repository, finding a soource code in the repository is not
easy. When a user reviews himself or herself, a interactive
file exolorer function like R1 is necessary. And we consider
four kinds of metrics as visualized metrics in R2 as belows.

∙ Meta information in recent revision (date, revision ID,
committer, comment)

∙ A history list for each revision
∙ A growth graph of source code metrics value
∙ A percentage of commitments users make

It is generaly thought that when you search your problems
and improvemnts, you search extraordinary or abnormal points
about them and confirm their detail later. To help this series of
reviews, first, it is nessary to visualize metrics like the help of
a bird’s-eye view of the entire action. The four kinds of metrics
are the easy information which user can understand intuitivily
in the information about development activities. We try to help
to review ourselves by showing these informations on a screen.

Fig. 3. Screenshot of MetricsViewer

In particular, a user can confirm the growth process of source
code with a growth graph and the detail of each revision from
the history information.

C. Features

We show the screenshot of MetricsViewer in Figure 3.
The left side of this figure shows a feature for searching a

file in a repository. This feature meets requirement R1. The
right side of the figure represents a feature of requirement R2
which visualizes measurement results and other repository in-
formation. We explain the five main features of MetricsViewer
after this section.

1) Package Explorer: Package Explorer provides a feature
to search a file in a specified repository. When a user selects
a repository, MetricsViewer retrieves a all source code list
in the repository automatically and generates explorer view.
If a user selects a file from this explorer, the user can use
the visualization function of following sections interactively.
When a user wants to register a new repository, the user only
has to input a URL, user ID and password of the repository
throw the left upper text fields of MetricsViewer. This feature
uses two APIs, lsr() and registerRepository(),
provided by MetricsWebAPI.

2) Latest Information: Latest Information shows meta in-
formation in the most recent revision (revision ID, commit
date, number of lines and committer) about a selected file. This
function enables users to understand the most recent status

559551551

5. get metrics

Metrics

WebAPI

MetricsViewer

1. register

JavaScript

html

2. register repository

RCS

repository

4. call metric calculation APIs

6. call graph generation APIs

7. get graph objects

8. generate

3. sync

Google

Chart Tools

9. view

service repositorysystem

component

service

response

service repositorysystem

component

service

response

������

�	

�������

������

�	

�������

Fig. 4. Architecture and process flow of MetricsViewer

of the file. getLatestRevision() and getSloc() are
used to get meta information.

3) Revision History: Revision History shows a history for
each revision as a table format. A user can understand detailed
information which is difficult to read by a visualized graph.
getRevisions() is used in this feature.

4) SLOC Line Chart: SLOC Line Chart visualizes the
growth of a source lines of code about a selected file as a
line chart. A vertical axis shows number of lines and horizontal
axis shows dates. A user can understand how the selected code
growths day by day.. getSlocs() is used to get metric of
source lines of code. This feature will be extended to generate
a graph with other process metrics.

5) Contributor Pie Chart: Contributor Pie Chart shows the
degree of contribution of a user which edits addtionaly and
deletes a selected file by using a pie chart. This degree of
contribution is calculated from the percentage of number of
committments. A user can show a degree of cotributions about
collaborative developers. getContributors() is used as
API.

D. Process Flow of Visualization

The visualization process flow of MetricsViewer is shown
as follows.

Step1 : A user registers his/her repository through Met-
ricsViewer’s html page.

Step2 : JavaScript component invokes repository registering
API.

Step3 : MetricsWebAPI synchronizes the specified RCS
repository.

Step4 : JavaScript component invokes metrics measurement
APIs.

Step5 : MetricsWebAPI returns calculated metrics.
Step6 : JavaScript component invokes graph generation

APIs provided by Google Chart Tools.
Step7 : Chart Tools returns graph objects.
Step8 : JavaScript component generates visualization html

page.

Question 1. Please evaluate three points as below.
| 4: very satisfied | 3: satisfied | 2: dissatisfied | 1: very dissatisfied |

- usability [4 3 2 1]
- visibility of information [4 3 2 1]
- implementation time [4 3 2 1]

Question 2. Please describe “self-discovery’’ which is obtained in your writing action.
Question 3. Please describe “improvement and reflection’’ about your writing action.
Question 4. Please describe “complaint and improvement’’ about the system.
Question 5. Please describe something else you found.

Fig. 5. Questionnaire

Step9 : Generated html is visualized on the browser.

E. Implementation

MetricsViewer is implemented by html, css and Javascript.
jQuery is used in main procedure. Development effort is about
two man months. Number of program steps is four hundred
thirty.

IV. EXPERIMENT

A. Overview

As a preliminary experiment that ascertain the efficacy of
MetricsViewer for the own review, the proposed system used
by subjects. For a theme of preliminary experiment, writing
action of the workshop manuscript is chosen instead of the
software development action because of the lack of enough
history data and subjects. However, from the evaluation of
proposed method point of viewing, flexible theme can be
acceptted for the experiment and the writing action, exactly
growth of a tex file, is enough too.

The subjects are four graduate school students belong to
master’s course. The procedure of the expriment is as follows.
First, subjects visualized the first own tex file of the manuscript
by using the proposed system. Then, the most recent subject’s
tex file is visualized too. Finally, they fill in the questionnaire
about review of own writing with a comparison of visualiza-
tion results.

Figure 5 shows actual questionnaries used in the experiment.
The questionnarie includes quantitative evaluation such as
usability, visibility of the information and implementation
time, and questions about self-review and self-discovery, and
dissatisfied point of the sysytem.

B. Result

We show the result of the questionnaire in Figure 6 and of
visualization about recent writing action of a subject in Figure
7 as a example of the visualizing results. From Question 2
about self-discovery, most subjects answered, “I made final
push hard before the deadline of the writing.”. And about the
question about his own improvement and reflection points,
the opinions such as “I should plan the writing schedule
to write my manuscript in good time.” and “I found that I
was lenient myself.” were obtained. About complains of the
system, opinions like “I want to compare some files at the
same time.” and “I want to review my action on not a per file

560552552

Question 1: four-grade evaluation
- usability 3.5 point on average
- visibility of information 3.3 point on average
- implementation time 2.3 point on average

Question 2: self-discovery
- Recent writing action is hard about final push before the

deadline.
- I remembered the help of my teacher.
- I wrote the first manuscript in plenty of time.
- I found that I roughly finished writing the manuscript and after

that, I edited the detail part of it

Question 3: self-improvement and reflection
- I should make a plan to write in plenty of time.
- When I reviewed recent writing action, I found that I was

lenient with it even if it was before the deadline.
- I should have committed frequently in the viewpoint of the

review. If the idea and trouble at that time are recorded correctly,
they are useful

Question 4: complaint and improvement of the system
- I want to visualize some files at the same time.
- I want to visualize my writing action on a per person, not a

per file.
- I want to add the function to compare with not only the past

review but also the schedule.
- I want to show the comment of each revision.

Question 5�other opinion
- I was interested because my writing action was visualized

intuitively.

Fig. 6. Result of Questionnaire

but a per person.” were obtained. From other opinions, the
opinion that the review itself is interesting was obtained.

Figure 6 and Figure 7 shows results of the questionnaire
and one example of visualization on recent writing action of a
subject. From Question 2 about self-discovery, most subjects
answered, “I made final push hard before the deadline of the
writing.”. About the question about own improvement and
reflection points, opinions such as “I should plan the writing
schedule to improve my manuscript.” and “I found that I was
lenient myself.” were obtained. For dissatisfied points of the
system, “I want to compare some files at the same time.” and
“I want to review my action on not a per file but a per person.”
were enumerated. As for other opinions, “the act of self review
is very interesting” was obtained.

From other opinions, the opinion that the review itself is
interesting was obtained.

V. DISCUSSION

A. Usability

From quantitative question items, the usability was 3.5 point
on average and the visibility was 3.3 point on average and the
evaluation of them was mostly high. And from other opinions
the opinion that the act of self-review was interesting was
obtained. Moreover from qualitative questionnaire, there were
some self-discoveries, improvements and reflections in fact.

Fig. 7. Visualization Result Conducted by a Subject

consequently it is thought that the usability of the proposed
system could be verified.

Additonally, most subjects answered that the recent writing
action was harder about the final push before the deadline.
Especially about the subject whose result we showed in Figure
7, he answerd that if it was plenty of time until the deadline,
he was lenient about the writing action. From the view of
the work of a per laboratory, he should make a schedule in
advance to write his manuscript in plenty of time. In this way,
it is thought that the proposed system contributes not only
self-review but also review of a per team.

B. Limitations

About the evaluation in Question 1, there were a lot of
complains about implementation time. This is because the
update procedure of a repository and calculation procedure
are implemented every time API of calculating metrics is call
and the result of procedure is never reused. In this point, it is
considered that improvements of MetricsWebAPI such as the
cache, not of the proposed system are needed.

From the viewpoint about the help of self-review, the
improvement points to the proposed system such as the display
of the comment of the commitment to confirm reason for
change of each revision and comparison and visualization
of metrics of some files at the same time were obtained.
These functions are already provided by MetricsWebAPI, so
the extension is comparatively easy.

Now visualization of only a per file is supported, but
visualization of a per developer is absolutely necessary in

561553553

terms of self-review. For example, we think that visualizing
the informations like list of edited files and co-developers
and number of commitments of the developer can help more
effective self-review. API provided by MetricsWebAPI now
can’t help the function of collecting metrics about this devel-
oper because basically they only access the information about
mainly a file. To visualize metrics of a per developer, we need
to develop a new service following the framework to collect
metrics of every developer.

VI. CONCLUSION

In this paper, we developed a web application, Met-
ricsViewer, which visualizs some variety of source code met-
rics to help self process improvements. Developer can easily
look back their own development process without mining
specific knowledge and other tools. From the experiment
by four subjects, we confirmed that they could fined their
impovements and reflections by doing so.

In our future works, we will extend MetricsViewer to
support other visualization features that commonly used in
development process improvement. For instance, experimental
subjects required a feature to visualize a comment of each
revision, a feature to compare some source codes and a
feature to visualize developer’s activities. Moreover, we are
considering a granularity of visualizations. Both visualization
of coarse-grained (e.g., project and package level) and fine-
grained (source code and revision level) should help look back
of developer’s activity.

ACKNOWLEDGMENTS

This research was partially supported by the Japan Ministry
of Education, Science, Sports, and Culture [Grant-in-Aid for
Scientific Research (C) (No.24500079), Scientific Research
(B) (No.23300009)], and Kansai Research Foundation for
technology promotion.

REFERENCES

[1] S. Matsumoto and M. Nakamura, “Service oriented framework for mining
software repository,” in Proceedings of the Joint Conference of the 21st
International Workshop on Software Measurement (IWSM) and the 6th
International Conference on Software Process and Product Measurement
(Mensura), 2011, pp. 13–19.

[2] E. Cerami, Web Services Essentials. O’Reilly, 2002.
[3] C. C. Williams and J. K. Hollingsworth, “Automatic mining of source

code repositories to improve bug finding techniques,” IEEE Transactions
on Software Engineering, vol. 31, no. 6, pp. 466–480, 2005.

[4] R. W. Selby, “Enabling reuse-based software development of large-scale
systems,” IEEE Transactions on Software Engineering, vol. 31, pp. 495–
510, 2005.

[5] H. Kagdi, Y. S, and J. I. Maletic, “Mining sequences of changed-files from
version histories,” in Proceedings of the 3rd International Workshop on
Mining Software Repositories (MSR ’06), 2006, pp. 47–53.

[6] A. P. Nikora and J. C. Munson, “Understanding the nature of software
evolution,” in Proceedings of the 19th International Conference on
Software Maintenance (ICSM ’03), 2003, pp. 83–93.

[7] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Transaction on Software Engineering, vol. 35, no. 2, pp. 293–304,
2009.

562554554

