
Design and Evaluation of Lifelog Mashup Platform
with NoSQL Database

Kohei TAKAHASHI, Shinsuke MATSUMOTO,
Sachio SAIKI, and Masahide NAKAMURA

Graduate School of System Informatics, Kobe University
1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan

{koupe@ws.cs, shinsuke@cs, sachio@carp, masa-n@cs} .kobe-u.ac.jp

ABSTRACT
To support mashup of heterogeneous lifelog services, we
have previously implemented the lifelog common data model
(LLCDM). The previous LLCDM was implemented with
MySQL, where various types of application-specific data (e.g.,
numeric values, text, JSON or XML) were all stored in a
<content> column in a schemaless text format. Any query
with application-specific data had to be managed by indi-
vidual applications.It had also a scalability issue as the data
size grew.
To cope with the limitations, this paper re-engineers the

LLCDM with MongoDB NoSQL database. We extensively
use the document-oriented semi-strucuted data schema of
MongoDB for representing the <content> column. We also
re-implement Web-API for the LLCDM which allows queries
with both application-specific and neutral attributes. We
evaluate performance and complexity of the new system
through application development with real sensor data.

Categories and Subject Descriptors
H.3.5 [INFORMATION STORAGE AND RETRIEVAL]:
Online Information Services—Web-based services; D.2.12 [SOFT-
WARE ENGINEERING]: Interoperability—Data map-
ping ; H.3.4 [INFORMATION STORAGE AND RE-
TRIEVAL]: Systems and Software—Performance evalua-
tion

General Terms
DESIGN, PERFORMANCE, STANDARDIZATION

Keywords
lifelog, data integration, mashup, api, web services, NoSQL

1. INTRODUCTION
Lifelog is a social act to record and share human life events

in open and public form [9]. A variety of lifelog services cur-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2013, 2-4 December, 2013, Vienna, Austria
Copyright 2013 ACM 978-1-4503-2113-6/13/12 ...$15.00.

rently appear in the Internet. Popular services include Twit-
ter for delivering tweets, foursquare for sharing the “check-
in” places.The great success of these services lies not only in
information technologies, but also in the nature of human
beings, loving to collect and store possessions, memories, ex-
periences [10]. Integrating different lifelogs may create more
values rather than using them separately. In this paper,
we use a term lifelog mashup to refer to such integration of
different lifelogs to create a value-added service.

To support efficient lifelog mashup, we have previously
proposed lifelog mashup platform considering of the lifelog
common data model (LLCDM) and the lifelog mashup API
(LLAPI) [8]. The LLCDM prescribes a generic data schema
for lifelog records, which does not rely on any specific lifelog
service. The LLCDM is designed based on an interroga-
tive analysis, deriving standard attributes from viewpoints
of what, why, when, who(m), where and how.

The previous LLCDMwas implemented with MySQL, and
application-neutral attributes like <date>, <time>, <user>

and <location> were managed within the platform. SQL
over these attributes could retrieve data of heterogeneous
lifelog services, which was published as the LLAPI. How-
ever, application-specific data was regarded as unstructured
data named <content>. Various types of data (e.g., numeric
values, text, JSON or XML) were all stored in a <content>

column in a schemaless format. Any query with application-
specific attributes could not be expressed by SQL, and had
to be managed manually by individual applications. It had
also a scalability issue as the data size grew.

To cope with the limitations, we re-engineer the LLCDM
with MongoDB, a document-oriented NoSQL database, in
this paper. Using semi-structured data schema of MongoDB
extensively, we represent each <content> data as a docu-
ment. Considering limitations of MongoDB, we carefully
re-design the LLCDM so as to achieve both flexibility for
various types of data and powerful queries over the docu-
ments. We also re-implement the LLAPI by which users
can put and get various types of lifelogs using queries with
both application-specific and neutral attributes. The LLAPI
is deployed as Web service.

To show practical feasibility, we conduct an experimental
evaluation. In the experiment, we develop an application
finding summery days from real logs of a temperature sensor.
We build the application using the new and old implemen-
tations of the LLAPI, and compare them from viewpoints of
performance and development complexity. The results show
that the new implementation achieves better performance
and scalability with easier application development.

2. PRELIMINARIES

2.1 Lifelog Mashup
Mashup is a new application development approach that

allows users to aggregate multiple services to create a service
for a new purpose [3]. Lifelog mashup is a mashup that
aggregates different lifelog services to create a new value-
added service. For example, integrating Twitter and Flickr,
a person may easily create a photo album with comments
(as tweets). Integrating sensor log and activity log, one may
recall the weather of a day(s) he went for a jogging.
Some lifelog services are providing APIs for the purpose of

lifelog mashups. However, there is no standard specification
among such APIs or data formats of the lifelog. Figure 1(a)
is a data record of Twitter, describing information of a tweet
posted by a user “koupetiko” on 2013-07-05. Figure 1(b)
shows a data record retrieved from SensorLoggingService [5],
developed in our laboratory, representing a various sensor’s
values of user “koupe” on 2013-07-05. Although both are in
the JSON (JavaScript Object Notation), the data schema
of the two records are completely different, and there is no
compatibility. Note also that these records were retrieved
by different ways by using proprietary APIs and authentic
methods. Thus, the conventional mashup applications have
been developed as shown in Figure 2.

2.2 Lifelog Mashup Platform
To support efficient lifelog mashup, we have previously

proposed a lifelog mashup platform [8]. The platform con-
sists of the lifelog common data model (LLCDM) and the
lifelog mashup API (LLAPI), as shown in Figure 3.

Lifelog Common Data Model (LLCDM)
In the proposed platform, data stored in heterogeneous lifelog
services are transformed and aggregated in an application-
neutral form, called lifelog common data model (LLCDM).
Table 1 shows the data schema of the LLCDM. Data at-
tributes were carefully determined from the viewpoints of
when, who, where, how, what and why. Attributes from
the when, who, where and how perspectives are application-
neutral attributes, which are commonly interpreted among
different lifelog services. Therefore, the data values for these
attributes are normalized in the LLCDM.
On the other hand, data from the what perspective varies

from a lifelog service to another. To accept a wide variety of
(even unknown type of) lifelog data, the LLCDM stores the
raw data in the <content> attribute, as a unstructured plain
text. The LLCDM itself does not interpret the <content>

data. Instead the LLCDM has a reference to an external
data schema <ref_schema>, by which an application inter-
prets the raw data. The previous LLCDM was implemented
using MySQL.

Lifelog Mashup API (LLAPI)
The LifeLog Mashup API (LLAPI) searches and retrieves
lifelog data conforming to the LLCDM. The following shows
an API that gets lifelog data records matching a given query.
Using getLifeLog(), heterogeneous lifelogs can be accessed
uniformly without proprietary knowledge of lifelog services.

getLifeLog(s_date, e_date, s_time, e_time, user,

party, object, location, application, device, select)

Parameters:

(a) A data record of Twitter

(b) A data record of Sensor Logging Ser-
vice

Figure 1: Data of two different lifelog services

s_date s_date : Query of <date> (start, end)

s_time e_time : Query of <time> (start, end)

user,party,object: Query of <user>,<party>,<object>

location : Query of <location>

application : Query of <application>

device : Query of <device>

select : List of items to be selected

To allow invocations from various platforms, the LLAPI was
published as Web service (REST, SOAP) wrapping an SQL
statement to execute the query.

2.3 Limitations in Previous Implementaion
The previous implementation had two major limitations.
The first limitation is that we could not specify application-

specific attributes (contained in the <content> column) for
data query. As seen in the above, the content was stored
in an unstructured plain text, over which SQL cannot de-
scribe a condition. Thus, all the parameters of the LLAPI
are given over the application-neutral attributes.

For example, the previous LLAPI was able to support a
query like“Q1: get logs on 2013-08-01 of all possible temper-
ature sensors”. However, we could not give a query like “Q2:
get logs of a temperature sensor t1, where its temperature
was greater than 25 degree”. To process Q2, an application
had to retrieve all logs of t1 first, then manually parse the
<content> column to evaluate the condition “temperature
> 25”. The same thing is true for any application-specific

Table 1: Common data schema of LLCDM
perspective data items Description Instance
WHEN <date> Date when the log is created (in UTC) 2013-07-05

<time> Time when the log is created (in UTC) 12:46:57
<epoch> UNIX Time (sec) when the log is created (in UTC) 1373028417

WHO <user> Subjective user of the log koupe
<party> Party involved in the log shinsuke mat
<object> Objective user of the log masa-n

WHERE <latitude> Latitude where the log is created 34.72631
<longitude> Longitude where the log is created 135.23532
<altitude> Altitude where the log is created 141
<address> Street address where the log is created 1-1, Nada, Kobe
<name> place name where the log is created Kobe University

HOW <application> Service/application by which the log is created Flickr
<device> Device with which the log is created Nikon D7000

WHAT <content> Contents of the log (whole original data) <photo id=".." owner=".." title=".."

<ref_schema> URL references to external schema http://www.flickr.com/services/api/
WHY n/a n/a n/a

Figure 2: Conventional Approach of Lifelog Mashup

Lifelog Common Data Model
(LLCDM repository)

Lifelog API(LLAPI)
(put/getLifelog)

Mashup
App.1

Mashup
App.2

Mashup
App.3

Transform / Aggregate

Figure 3: Proposed Lifelog Mashup Platform [8]

attributes like humidity, text of tweets, url of a picture,
etc. Moreover, it is impossible to retrieve only tempera-
ture’s value like the SQL statement’s “SELECT”.Any query
with application-specific attributes had to be managed by
individual mashup applications. This imposed large appli-
cation overhead and expensive development cost.
The second limitation is scalability for the size of lifelog

data as the previous implementation used MySQL RDB. In
the future, more and more lifelog services will appear, and
data from these new services will be exploded. Our platform
should be scalable enough to the era of big data.

3. IMPLEMENTING LIFELOG MASHUP
PLATFORM WITH NOSQL DATABASE

3.1 Goal and Approach

The goal of this paper is to overcome the above limi-
tations. Specifically, we re-engineer the LLCDM and the
LLAPI so as to meet the following goals:

• G1: Enable data queries with application-specific data
attributes within the <content> column.

• G2: Address the scalability issue.

To achieve these goals, we replace MySQL with a document-
oriented NoSQL Database MongoDB [6].

The essential problem of the previous implementation was
that the rigorous data schema of RDB (i.e., MySQL) could
not express well the structure of various (or even unknown)
types of data stored in the <content> column. Our key
idea is to employ a flexible schema of MongoDB, where
data schema can be determined dynamically. With Mon-
goDB, every data from heterogeneous lifelog services can
be represented by a semi-structured document, consisting
of nested key-values. MongoDB can execute flexible data
queries for the semi-structured documents, which is promis-
ing to achieve goal G1. As for goal G2, NoSQL databases, in-
cluding MongoDB, are easy to scale in general. The cost/gigabyte
or transaction/second can be many times less that the cost
for relational database management systems [7].

There are, of course, limitations of NoSQL compared to
RDB. Therefore, we have to carefully re-engineer the LL-
CDM and LLAPI, considering the limitations of MongoDB
within our problem domain.

3.2 Characteristics of MongoDB
MongoDB is a schema-less document oriented database

developed by 10gen and an open source community [6]. In
MongoDB, the terms “collection” and “document” are used
instead of “table” and “row” in SQL databases. We here
briefly review characteristics of MongoDB from the aspect
of advantage (Pros) and disadvantage (Cons).

Pros1: Document-Oriented Storage
MongoDB stores documents as BSON (Binary JSON)
objects, which are binary encoded JSON like objects.
BSON supports nested object structures with embed-
ded objects and arrays like JSON does [6].

Pros2: Full Index Support
MongoDB indices are explicitly defined using an en-

sureIndex call, and any existing indices are automati-
cally used for query processing [1].

Pros3: High Availability, Easy Scalability
MongoDB supports automatic sharding, distributing
documents over servers [1]. And it supports replication
with automatic failover and recovery, too.

Pros4: Supports MapReduce
MongoDB supports MapReduce. MapReduce is a pro-
gramming model and an associated implementation
for processing and generating large datasets that is
amenable to a broad variety of real-world tasks [2].

Cons1: No Transaction
MongoDB has no version concurrency control and no
transaction management [4]. But, atomic operations
are possible within the scope of a single document.

Cons2: No JOIN
MongoDB does not support joins. So, some data is
denormalized, or stored with related data documents
to remove the need for joins.

Cons3: Not Matured Technology
MongoDB has a relatively short history compared to
RDBMSs such as mySQL, PostgreSQL and so on. It
indicates frequently releases of new versions.

3.3 Validating Applicability of MongoDB
Based on the above characteristics, we examine the appli-

cability of MongoDB to achieving goals G1 and G2.
P1 and P2 are primary characteristics to achieve G1. In

the LLCDM repository, raw data from heterogeneous lifelog
services are all stored in the <content> column. Each data
item has a different set of attributes stored in a specific data
structure. Therefore, the LLCDM cannot force the static
data schema for <content> column. The BSON object of
MongoDB is well suited to represent such dynamically-typed
data. Columns except <content> must be defined in the
standard schema of the LLCDM. The full index support is
useful for queries over these columns. A drawback of the
flexible schema is that the database may allow corrupted or
invalid data to be inserted. Therefore, we have to implement
a validator for the LLCDM to filter wrong data.
P3 and P4 contribute to G2. MongoDB can manage a

huge amount of data, as the name “mongo” came from as
sub-string of “humongous”. MapReduce provides powerful
distributed processing for large-scale data, which should be
useful for the large-scale data processing in the LLAPI.
Discussion from the Cons aspect is as follows. Once the

lifelog data is put in DB, it is never updated since the lifelog
is a log. Without the update, the lack of transaction is not
a problem for managing the LLCDM. Thus, there is no spe-
cial trouble with C1. C2 means that we need to break a
way of the conventional data modeling with normalization.
According to the practice of MongoDB, when an entity has
a “contains” relationship, it is recommended to embed the
child in the parent. When entities have one-to-many rela-
tionships, it is recommended to embed or reference. The
embedding is recommended in case of one-to-many relation-
ships where the many objects always appear in the parent.
In the new implementation, we count the practice. We do
not worry about C3, since MongoDB is a new technology.

lifelog

+ _id*
+ epoch*
+ date*
+ time*
+ user*
+ party
+ object
+ location
+ application*
+ device
+ content*

application

+ _id*
+ appname
+ provider
+ url
+ ref_scheme
+ description

user

+ _id*
+ firstname
+ lastname
+ contact
+ aliases

{
"_id" : "koupe",
"firstname" : "Kohei",
"lastname" : "TAKAHASHI",
"contact" : "koupe@ws.cs.kobe-u.ac.jp",
"aliases" : [
{ "service" : "twitter", "account" : "koupetiko" },
{ "service" : "SensorLoggingService", "account" : "koupe" }

]
}

{
"_id" : "twitter",
"appname" : "Twitter",
"provider" : "Twitter, Inc.",
"url" : "https://twitter.com/",
"ref_scheme" : "https://dev.twitter.com/docs/api/1.1",
"description" : "The fastest, simplest way to stay...."

}

{
id: "51d53353bab4c498bccb20e3",
epoch: 1372931217
date: "2013-07-05",
time: "03:46:57",
user: "koupe",
party: "",
object: "",
location: {

latitude: 34.725737, longitude: 135.236216,
altitude: 141, name: "room S101",
address: "1-1, Rokkdai-cho, Nada, Kobe"

},
application: "SensorLoggingService",
device: "Phidgets, WeatherGoose",
content: {

Time: "12:46:57",
User: "koupe",
Weather: "Sunny",
....,

}
}

Figure 4: ER diagram for the LLCDM repository

3.4 Data Modeling of LLCDM with MongoDB
Considering the above issues, we re-design the data model

of the LLCDM with MongoDB.
Figure 4 shows an ER diagram representing the new ver-

sion of the LLCDM. A box represents an entity (i.e., collec-
tion in MongoDB), consisting of an entity name, a primary
key, foreign key, and attributes. We enumerate instances
beside each entity in JSON format to support understand-
ing. A line represents a relationship between entities, where
+—· · · denotes a reference relationship. An underlined at-
tribute of an entity represents a primary key. An attribute
with brackets represents a foreign key, pointing to a pri-
mary key of another entity. An attribute with a asterisk
represents a mandatory (non-null) attribute. The proposed
model consists of the following three collections.

(a) lifelog: This is the main collection of the LLCDM. All
lifelog data retrieved from individual lifelog services
are managed in this entity. As seen in Section 2.2 and
Table 1, the entity has attributes of the LLCDM. As
for content attribute, the raw data of a lifelog service
is stored in a BSON document. Detailed information
of a user and an application are referred to external
entities of user and application, respectively.

(b) application: In this collection, we manage the de-
tailed information of individual lifelog services and ap-
plications. The application information is used to iden-
tify the access method to retrieve the data and the
data schema of the retrieved data. Since we consider
that these information are not always needed for every

lifelog record. we manage it in a separate collection.

(c) user: This collection manages the user information,
consisting of ID, user name, contact information, alias
names used in individual services. The reason why we
provide this collection is that the user information is
commonly attached in various lifelog data, and is one
of the most frequently used information in the mashup.
Also, the same user often uses different id in different
lifelog services. Therefore, we newly define an aliases
attribute to consolidate different names.

3.5 Designing LLAPI with MongoDB
On top of the new LLCDM, we develop a new LLAPI con-

sisting of two methods: putLifelog() and getLifelog().
The putLifelog() method puts a given lifelog data into the
LLCDM, while the getLifelog() method gets lifelog data
from the LLCDM based on a given query.
As a drawback of the flexible schema, MongoDB does

not have strict data checking mechanisms (e.g., type check,
format check, key constraints check, etc.) which RDBMS
usually has. Therefore, without any consideration, the LL-
CDM would accept invalid (or even corrupted) data. The
putLifeLog() method plays a role of a gatekeeper of the
LLCDM, which strictly validates the conformance of the
given lifelog data. When an application calls putLifelog()
method with parameters corresponding to the attributes of
the lifelog entity, the parameters are validated based on the
schema of the LLCDM. Once the validation is passed, a
BSON document is created with the parameters and is in-
serted into the LLCDM. Thus, the lifelog data inserted via
putLifelog() conforms to the LLCDM schema.
Once the lifelog data is stored in the LLCDM, we can

retrieve the data using powerful queries language of Mon-
goDB. Extending the capability of the previous LLAPI, we
develop the getLifelog() method as follows.

getLifelog([s_date, e_date, s_time, e_time, s_term,

e_term, user, party, object, s_alt, e_alt, s_lat,

e_lat, s_long, e_long, loc_name, address, application,

device, content, select, limit, order, offset])

Parameters:

s_date, e_date : Query of <date> (start, end)

s_time, e_time : Query of <time> (start, end)

s_term, e_term : Query of <epoch> (start, end)

user,party,object: Query of <user>,<party>,<object>

s_alt, e_alt : Query of <location.altitude>

s_lat, e_lat : Query of <location.latitude>

s_long, e_long : Query of <location.longitude>

loc_name : Query of <location.name>

address : Query of <location.address>

application : Query of <application>

device : Query of <device>

content : Queries of <content>

select : List of items to be selected.

limit : Limit on # of data items.

order : Sorting order of items.

offset : Skip retrieved items.

tz : Timezone for date and time.

Compared to the previous version (see Section 2.2), the
new version can take more parameters, including queries of
content, select columns of all fields, limit of records, order

of sorting, timezone. Table 2 summarizes the comparison of
features of the old and new versions of the LLAPI. In the Ta-
ble 2, the triangle mark in the column of “select”means it is
imperfection. Because the previous LLAPI can select the ap-
plication neutral columns, but it can’t select the columns of
in <content> columns (e.g., content.temperature, content.
status.text). And we consider this is the major difference.

For given parameters, getLifelog() first parses a query
from each parameter. A null value is considered to be true.
The method then adjusts date, time, term parameters to
UTC time based on tz parameter. From content param-
eter, each query is stored in array $contentq[] (e.g., [

{content.temperature $ge 25}, {content.humidity $lt

40}], where $ge and $lt represent ≥ and <, respectively).
From select parameter, each attribute is stored in array
selectq[] (e.g., [date, time, content.temperature]. Fi-
nally, getLifelog() builds the following MongoDB query.

>db.lifelog.find({ date: {$ge: $s_date, $le: $e_date},

time: {$ge: $s_time, $le: $e_time},

epoch: {$ge: $s_term, $le: $e_term},

user: $user, party: $party, object: $objectq,

location.altitude: {$ge: $s_alt, $le: $e_alt},

location.latitude: {$ge: $s_lat, $le: $e_lat},

location.longitude: {$ge: $s_long, $le: $e_long},

location.name: /$loc_name/,

location.address: /$address/,

application: $application, device: $device,

$contentq[0], $contentq[1], ...

}, { $selectq[0]: 1, $selectq[1]: 1, ...}

).limit($limitq).skip($offsetq).sort({$orderq})

3.6 Implementation of LLAPI
Based on the above design thought, we have implemented

the LLAPI in Java. We used Morphia OR-mapper for mar-
shaling tuples into objects. To validate the parameters, we
have used Java Validation API (Hibernate Validator (JSR303)
Reference Implementation for Bean Validation). In order to
publish LLAPI as a Web service, we used JAX-RS (Jersey:
JAX-RS (JSR 311) Reference Implementation for building
RESTful Web services). The total lines of code is 1,436.

Now that the LLAPI can be executed by REST Web ser-
vice protocol. Figure 5 shows a response of getLifelog().
In this example, a Twitter data record describing a tweet
posted by a user “koupetiko” on 2013-05-01 is retrieved.

4. EXPERIMENTAL EVALUATION

4.1 Overview
We conduct an experimental evaluation to evaluate the

proposed platform. In the experiment, we use environmen-
tal sensor log from SensorLoggingService deployed in our
smart home. This service measures environment inside/outside
of our laboratory, using various sensors including tempera-
ture, humidity, brightness, pressure, motion and the number
of people. The sensor log has been recorded every minute for
over three years, comprising 1,664,937 records. For the ex-
periment, all the records are imported to both the new plat-
form (with MongoDB) and the old platform (with MySQL).

To measure the performance, we develop a client applica-
tion that picks out summery days from the sensor log. A
summery day is defined as a day, where the maximum tem-
perature between 9 a.m and 6 p.m exceeds 25 degree. Using

Table 2: Comparison of Functions
LLAPI date time term location application device content select limit order offset timzone

old (mySQL)
√ √ √ √ √ �

new (Mongo)
√ √ √ √ √ √ √ √ √ √ √ √

{
count: 19,
result: [

{
id: "51d531d1bab4c498bccb1f63",
date: "2013-05-01",
time: "13:10:00",
user: "koupetiko",
party: "",
object: "",
application: "twitter",
device: "Krile2",
content: {

source: "Krile2",
created_at: "Wed May 01 13:10:00 +0000 2013",
text: "What's a bad machine...",
user: {

profile_image_url_https: "https://..._normal.gif",
screen_name: "koupetiko",
...

},
entities: {

...
},
...

}
},
{

id: "51d531d1bab4c498bccb1f64",
date: "2013-05-01",
time: "13:08:05",
...

},
...

]
}

Figure 5: a response of getLifelog

the Perl language, we develop two versions of the client: one
is with the new LLAPI and another with the old LLAPI.
We execute both versions of the clients and measure the ex-
ecution time. To see the scalability, we vary the term of the
sensor log to be searched as follows: (1 day, 1 week, 10 days,
20 days, 1 month, 2 months).

4.2 Clients Finding Summery Days
We here see the difference of the two versions of the client.

(1) getSummeryNew.pl: client with the new LLAPI

The client with the new LLAPI requires the following 2 steps
to identify the summery days:

Step1: Execute the new LLAPI as follows to obtain lifelog
records that meets the condition of summery day:

getLifelog({s_date:start_date, e_date:end_date,

s_time:09:00:00, e_time:18:00:00,

content:[{content.temperature: {$gt: 25}}],

application:SensorLoggingService, select:[date]})

Step2: Pick out only distinct date values.

(2) getSummeryOld.pl: client with the old LLAPI

Since the old LLAPI does not allow a query over the content
column, the client application by itself has to evaluate the

0.7926

1.9896
2.6586

3.7234

5.3946

13.1358

1.5536
1.572 1.5822 1.6016 1.646 1.7446

0

2

4

6

8

10

12

14

1day 1week 10days 20days 1month 2month

getSummeryOld getSummeryNew

[sec]

(a) Comparison of Execution Time

548

3841

5425

7986

11009

27470

0 131 377 845

2126 2226

0

5000

10000

15000

20000

25000

30000

1day 1week 10days 20days 1month 2month

getSummeryOld getSummeryNew

[items]

(b) Comparison of Retrieved Items for tha
same purpose

Figure 6: Graphs of the Result of Picking out Sum-
mery days

condition over the temperature.

Step1: Execute the old LLAPI as follows to obtain all
lifelog records within the term:

getLifelog({s_date:start_date, e_date:end_date,

s_time:09:00:00, e_time:18:00:00,

application:SensorLoggingService})

Step2: By parsing the content column of every record,
extract the value of temperature. If the value is greater
than 25, put the date in the result set.

Step3: Pick out distinct date values from the result set.

4.3 Result of Experiment
According to the search term (1 day, 1 week, 10 days, 20

days, 1 month, 2 months), we set values of start_date and
end_date in both clients. For each term, we execute the
clients five times and measure the average execution time.

Figure 6 shows the result. Figure 6(a) shows the result
of execution time. getSummeryNew.pl with the proposed

LLAPI outperforms getSummeryOld.pl with the old API.
To evaluate the overhead within the clients, we also count
the number of data records extracted from the database.
Figure 6(b) shows the comparison of the number of data
records. As shown in the figure, the client with the old
LLAPI retrieves much more data records.

4.4 Discussion on Performance & Scalability
The execution time of getSummeryOld.pl is proportional

to the number of retrieved items. This is because the tem-
perature condition has to be evaluated by the client itself.
Therefore, the performance drops as the search term be-
comes longer and the number of records becomes larger.
In contrast, the execution time of getSummeryNew.pl in-

creases very slowly even if the search term becomes longer.
The major reason is that the temperature condition is eval-
uated within the MongoDB management system, which is
quite scalable. The number of retrieved records is sup-
pressed and the overhead to the client is quite low.
Fitting the curve of Figure 6(a) onto a linear function, the

slope of the execution time of getSummeryOld.pl is about
0.2 seconds per day, while the one of getSummeryNew.pl is
about 0.003 seconds per day. Thus, the new LLAPI with
MongoDB enables to create more scalable applications.
It is interesting to see in Figure 6(a) that getSummeryOld.pl

is faster for 1 day. This shows that MySQL is a very fast
database system, working efficiently with the relatively small
number of records. Most of the execution time is taken for
the Perl client to parse the content column. If MySQL allows
a structured data field (although it is against the principle
of RDB), then it might outperform MongoDB.

4.5 Discussion on Application Complexity
As discussed in Section 4.2, the old LLAPI does not accept

query on <content> of the LLCDM. Therefore, if a client
application wants to search lifelog data with application-
specific attributes, then the client has to implement the fol-
lowing tasks:

• (T1: Get) Obtain the lifelog records based on a query
with application-neutral data attributes.

• (T2: Parse) For every record obtained, parse the un-
structured text data in <content> to extract necessary
data values.

• (T3: Filter) Evaluate the data values for a certain con-
dition.

The old platform takes care of task T1 only. Tasks T2
and T3 are left for application developers. Thus, individ-
ual developers have to write own code for implementing
application-specific parser and filter. This increases the de-
velopment complexity as well as the code complexity, which
severely affects the reliability of the application. Our exam-
ple of getSummeryOld.pl was relatively simple, since only a
single attribute (temperature) was used. In general, how-
ever, more complex condition with more attributes would
be used for lifelog mashup.
On the other hand, in an application with the proposed

new LLAPI, we can execute a query with both application-
specific and application-neutral attributes. Thus, all the
above tasks T1, T2 and T3 are executed within the new plat-
form. As a result, the structure of the application becomes
much simpler, as shown in our example of getSummeryNew.pl

in Section 4.2. The developer just concentrates on imple-
menting how to cook and show the obtained lifelog data.
The simple application structure improves the readability of
the code and improves the reliability.

5. CONCLUSION
In this paper, we re-engineered the existing lifelog mashup

platform [8] using a MongoDB NoSQL database, to cope
with the limitation on data query and scalability.

We also evaluated performance and development complex-
ity of the new platform through application development
with real sensor data. The experimental results showed
that the application with the new API achieves higher per-
formance and scalability with lower application complexity,
compared to the one with the previous API.

6. ACKNOWLEDGMENTS
This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (C) (No.24500079), Scientific Re-
search (B) (No.23300009)] and Sekisui House, Ltd.

7. REFERENCES
[1] R. Cattell. Scalable sql and nosql data stores.

SIGMOD Rec., 39(4):12–27, May 2011.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[3] G. D. Lorenzo, H. Hacid, H. young Paik, and
B. Benatallah. Data integration in mashups.
volume 38, pages 59–66. ACM, 2009.

[4] A. Milanović and M. Mijajlović. A survey of
post-relational data management and nosql movement.

[5] A. Okushi, S. Matsumoto, and M. Nakamura.
Considering value-added services using environmental
data collected by personal mobile sensing. In IEICE
Technical Report (Japanese Eds.), volume 112, pages
1–6, November 2012.

[6] R. P. Padhy, M. R. Patra, and S. C. Satapathy.
Rdbms to nosql: Reviewing some next-generation
non-relational databases. International Journal of
Advanced Engineering Science and Technologies,
11(1):15–30, 2011.

[7] S. Pastore. Web-oriented data formats and their
management in the mobile era. Mobile Computing,
2(2), 2013.

[8] A. Shimojo, S. Matsuimoto, and M. Nakamura.
Implementing and evaluating life-log mashup platform
using rdb and web services. In The 13th International
Conference on Information Integration and Web-based
Applications & Services (iiWAS2011), pages 503–506,
December 2011.

[9] K. Takata, J. Ma, B. O. Apduhan, R. Huang, and
Q. Jin. Modeling and analyzing individual’s daily
activities using lifelog. In Embedded Software and
Systems, 2008. ICESS’08. International Conference
on, pages 503–510. IEEE, 2008.

[10] Trend Watching .com. Life caching – an emerging
consumer trend and related new business ideas. http:
//trendwatching.com/trends/LIFE_CACHING.htm.

