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A home network system (HNS) coordinates various networked home appliances to achieve
value-added services. If multiple services are executed at the same time, functional con-
flicts between the home appliances may occur. These are known as feature interactions
(FIs) in the HNS. We have previously defined two kinds of FIs: appliance interactions and
environment interactions. Environment interaction refers to an indirect conflict of different
appliances in the home environment, which is generally more difficult to capture than
appliance interaction. Due to a lack of an amount of environmental impacts and require-
ments to be satisfied, the previous definition missed some obvious environment interac-
tions, or mis-detected many acceptable cases.

In this paper we try to extend the previous formalization by introducing two new con-
cepts. First we propose an environment impact model, which strictly defines how each appli-
ance operation contributes to the environment properties. Second, we introduce an
environment requirement to define the expected environment state achieved by each ser-
vice. We then re-formalize the environment interaction by a condition such that the accu-
mulated impacts violate the requirement of either of the services. A case study with five
practical services successfully detects the interactions that could not be characterized by
the previous definition.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A home network system (HNS) (also called a smart home)
is an emerging ubiquitous application that intends to pro-
vide smart and convenient home services [1,2]. The HNS
consists of networked household appliances and environ-
mental sensors. They include TVs, lights, air-conditioners,
curtains and thermometers, which are all connected to
the home network. The features of each appliance can be
accessed via an API. By executing the APIs of multiple
appliances using a certain service logic, the HNS achieves
integrated services. Here we introduce some examples.
Coming Home Service (CH) welcomes a user coming
home. When a user comes home the service turns on
the lights in an entrance hall and a living room, acti-
vates an aroma diffuser with a relaxation fragrance,
and turns on an air-conditioner.
TV Theater Service (TVT) sets up a living room for
watching TV in a theater-like atmosphere. When the
service is activated, a curtain is closed, lights are turned
off, and the TV is turned on.
BGM Service (BGM) provides back ground music using
a music player in a living room.
Air Cleaning Service (AC) cleans and deodorizes air in
the room using an air-cleaner. It also opens a window
to help air-cleaning.

As it can be easily imagined these services cause
feature interactions (FIs) [3,4] when they are executed
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simultaneously in the same environment. Instances of fea-
ture interactions among the above integrated services are
listed as follows.

FI-1 (CH vs TVT): When the CH and the TVT are exe-
cuted at the same time, a conflict
occurs concerning the light in the liv-
ing room. Specifically, the CH turns
on the light while the TVT turns off
the same light.

FI-2 (CH vs TVT): Another interaction can be observed
for the same combination of services.
The CH turns on the light in the
entrance hall. The light indirectly
makes the living room brighter,
which may ruin the theater-like
atmosphere of the TVT.

FI-3 (TVT vs BGM): This interaction occurs in the audio
domain. While the user is watching
a movie with the TVT, if someone
activates the BGM the music disrupts
the sound of the movie.

FI-4 (CH vs AC): Two services have opposite require-
ments on the fragrance in the room.
The CH selects the aroma diffuser
for the purpose of relaxation, while
the AC uses the air-cleaner to remove
any kind of odor.

In our previous work [5] we defined two kinds of fea-
ture interactions in the HNS: appliance interactions and
environment interactions. In our definition appliance inter-
action occurs when two services request incompatible
operations on the same appliance. For instance, FI-1 de-
scribed above is an appliance interaction, since incompat-
ible operations on() and off() are requested of the
same living-room light. The mechanism of the appliance
interactions is simple and intuitive. Therefore we were
able to formalize them by reasonable conditions. Based
on this we developed offline and online detection systems
for our practical HNS [6,7].

On the other hand, environment interaction occurs
when two operations of different appliances indirectly
interfere via environment properties (e.g. temperature,
brightness, etc.). FI-2, FI-3 and FI-4 above are all environ-
ment interactions. In FI-2, the living-room light and the en-
trance light conflict over the brightness in the living room.
As for FI-3, the music player disturbs the TV with respect to
the sound of the movie. In FI-4, the effect of the aroma dif-
fuser is nullified by the air-cleaner.

Compared to appliance interactions, it is generally more
difficult to formalize environment interactions. In our ori-
ginal definition [5] environment interactions were simply
characterized by conflicting read/write operations regard-
ing a certain environment property. Matsuo et al. [8] ex-
tended our definition by introducing the direction of
effect to the write operation. Kolberg et al. [4] and Wilson
et al. [9] used resource-locking mechanisms to express
environment interactions. Metzger et al. [10] modeled
the dependency between the control and the environment
with a goal-oriented framework.
However, we found that these previous definitions lack
sufficient detail to soundly capture all environment inter-
actions. First, they did not consider the degree (or amount)
of environmental impact. Our original definition only dealt
with the dependency between an operation and the envi-
ronment only but did not consider how much impact is
posed by the dependency. Thus we could not distinguish,
for example, the case of FI-2, where the effect of the en-
trance light on the living room is very small. Second, the
previous definitions did not consider the explicit require-
ment expected by each service on the environment. There-
fore, there were no criteria to determine whether the
environment interactions detected are acceptable or not.
For instance, FI-4 may not be a feature interaction if the ar-
oma fragrance is not a primary requirement of CH.

The goal of this paper is to offer a new definition of
environment interactions in the HNS that overcomes the
above limitations. To cope with the first problem we pro-
pose an environment impact model, which strictly models
the impact of each appliance operation on the environ-
ment’s properties. We then define an environment require-
ment to address the second problem, which specifies a
primary requirement to be achieved by each service. Final-
ly, we provide the new definition of environment interac-
tions. Intuitively, integrated services S1 and S2 cause an
environment interaction should the overall environmental
impacts (computed by the impact model) violate a certain
environment requirement of S1 or S2.

To evaluate the proposed method we conduct a case
study with five practical services. The results show that
the proposed method successfully detects those environ-
ment interactions that cannot be characterized by the pre-
vious definition.
2. Feature interactions in home network system

We first review feature interactions in the HNS based on
the previous studies.
2.1. Previous HNS model

In our previous work [5], we proposed an object-ori-
ented model to formalize feature interactions in the HNS.
In the model, every appliance in the HNS is represented
by an object with properties and methods. Each property is
a variable holding a certain value ranging over a type,
which characterizes the internal state of the appliance.
Each method m represents the API of the appliance, defined
by the following elements.

Pre(m): a pre-condition that should be satisfied
before executing m. It is defined with the
appliance properties.

Post(m): a post-condition that should hold after exe-
cuting m. It is defined with the appliance
properties.

EnvRead(m): a set of environment properties that are ref-
erenced by m.

EnvWrite(m): a set of environment properties that are
overwritten by m.



Fig. 1. Previous HNS model.

Fig. 2. Example of appliance interaction (FI-1) and environment interaction (FI-2).
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The pre/post-conditions characterize the functional as-
pect of the API within the appliance. EnvRead/EnvWrite
briefly represents the effects from/to the HNS environ-
ment, respectively. Basically, a method for sensing the
environment has EnvRead elements, while a method for
affecting the environment has EnvWrite elements. Matsuo
et al. [8] elaborated our original definition by introducing
direction in EnvWrite, in order to explicitly represent the
direction of the effect. The environment is a global object
consisting of environment properties, which are referenced
by all objects and services. An integrated service is defined
by a sequence of appliance methods.

Fig. 1 shows an example of the HNS model. Fig. 1a rep-
resents the appliance model, consisting of LivingLight, TV,
Curtain and AirCleaner. Let us take TV for example. This
TV has four properties: power, ch, input and volume.
TV.power can take a value of either ON or OFF. TV.sound
is an integer ranging from 1 to 100. TV.on() has a pre-con-
dition true, indicating it can be executed at any time. If
TV.on() is executed, TV.power becomes ON as specified
in the post-condition. The EnvWrite (Env.soundVolume,

up) indicates that TV.on() increases the sound volume
of the environment.

Fig. 1b shows an example of the environment object,
consisting of some typical environment properties:
brightness, soundVolume, temperature, etc. Fig. 1c
presents a model of the four integrated services, CH, TVT,
BGM and AC, which are the same services introduced in
Section 1. For example, the TVT model is defined by three
appliance methods: Curtain.close(); LivingLight.

off(); TV.on();. The sequence of the methods sets up
the theater-like atmosphere for watching TV in the living
room.

We assume that the HNS model is defined for every iso-
lated room in the house. Unless explicitly specified, every
environment property of a room is independent of those
of another room (or outside the house). Also, we do not
count the side-effects of an appliance method. For example,
turning on an air-conditioner may make a noise, increasing
the sound volume in the room. However, the effect on the
sound volume is not considered, unless explicitly specified
in the model.

2.2. Previous formalization of feature interactions

Using the HNS model we have defined the following
two kinds of feature interaction in the context of the
HNS. In the following, let S1 and S2 be any integrated ser-
vices, and let m1 (or m2) be any appliance method executed
in S1 (or S2, respectively).
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Appliance Interaction: m1 and m2 are methods of the
same appliance d, and are incompatible with each other.
Specifically, we state that S1 and S2 cause appliance inter-
action if at least one of the following conditions is satisfied.

� Post(m1) ^ Post(m2) = U (unsatisfiable) or
� Post(m1) ^ Pre(m2) = U (unsatisfiable)

Environment Interaction: m1 and m2 are methods of dif-
ferent appliances d1 and d2, respectively. However, m1

and m2 indirectly conflict via a certain environment prop-
erty Env.e. Specifically, we say that S1 and S2 cause environ-
ment interaction if an environment property Env.e exists
such that:

� (Env.e,up) 2 EnvWrite(m1) ^ (Env.e,down) 2 EnvWrite(m2)
or
� (Env.e,up or down) 2

EnvWrite(m1) ^ (Env.e) 2 EnvRead(m2)

Note that the condition is asymmetric for S1 and S2, be-
cause interchanging m1 and m2 in the second condition of
each definition cause a different situation1. So, we have to
consider the direction of combinations. For example, for
TVT and CH we have to check two combinations [TVT vs
CH] and [CH vs TVT] to detect the feature interactions.

Fig. 2 explains the feature interactions based on the for-
malization. In the figure, FI-1 and FI-2 are respectively the
appliance and environment interactions explained in Sec-
tion 1. In the following sections we especially focus on
environment interactions.

2.3. Limitations of previous definition of environment
interaction

In our subsequent research we found some cases of
environment interactions that could not be explained rea-
sonably with the above definition. This was due to the fol-
lowing two limitations.

Limitation 1: The model for interacting with the
environment is too coarse and abstract. For instance,
let us take FI-3 (TVT vs BGM) based on the previous model.
Both TV.on() of TVT and MusicPlayer.on() of BGM in-
crease Env.soundVolume, and thus TVT and BGM do not
cause the environment interaction. However this is against
our intuition. As for FI-4 (CH vs AC) it is not obvious to
specify the direction of fragrance change, since fragrance
is not a numeric metric. After all, the previous model with
environmental read/write operations only was too coarse-
grained to capture actual feature interactions.

Limitation 2: The requirement of service is not con-
sidered at all. Since requirements of services (or users)
are not considered at all, the previous definition regards
many acceptable cases as feature interactions. For instance,
consider FI-2 (CH vs TVT) again. If the effect of the entrance
light on the living room is very small, this is an acceptable
1 Intuitively, the second condition of each definition states that the result
of S1 may disturbs the execution of S2. Hence, for a given pair of services SA

and SB, the definition distinguishes between two cases which of SA or SB

disturbs another.
(or desirable) feature interaction. However, the previous
definition had no way of distinguishing acceptable cases
from harmful ones.
3. Characterizing environment impact in details

To cope with Limitation 1, in this section we propose a
new model, called the environment impact model. The envi-
ronment impact model describes the effect of each appli-
ance method on the environment in fine detail.

3.1. Classification of environment property

To establish the environment impact model we first in-
crease the detail level of the environment properties. We
here classify every environment property into two types:
numerical or non-numerical. A numerical property is an
environment property that can be represented by a num-
ber. Typical numerical properties include temperature,

brightness, soundVolume, humidity, etc. For a numer-
ical property, arithmetic operations can be applied.

On the other hand, a non-numerical property is the one
that is not numerical. Typical properties include fra-

grance, TV content, music content, etc. For non-
numerical properties we cannot use arithmetic operations.
Instead, we use set operations.

3.2. Environment impact

To precisely capture the environment interactions, it is
essential to know, for every appliance method, how much
impact is given to which environment properties. For in-
stance, suppose that when Light.on() is executed the
Light may increase by 200 lux. In this case we would like
to associate the impact of [Env.brightness += 200] to
Light.on(), where += denotes a self-addition operator.
Let us consider another example AirCon.setTempera-

ture(25), where the air conditioner tries to maintain
the room temperature at 25�. In this case we see the im-
pact [Env.temperature :¼ 25], where :¼ represents an
assignment operator.

As shown in the examples there are two types of im-
pact: cumulative and non-cumulative. The cumulative im-
pact adds (or subtracts) a certain value to (or from) the
current value of an environment property. Let e be an envi-
ronment property. We use the notation [e += value]

(addition) or [e -= value] (subtraction) to represent a
cumulative impact. On the other hand, the non-cumulative
impact replaces the current value of an environment prop-
erty with a new value. For this, we use the notation [e :¼
value].

The above impacts are valid when e is a numerical prop-
erty. When e is non-numerical we use set operations. For a
cumulative impact of a non-numerical property e, we use
the notation [e U={v1,v2, . . .}] (set addition) or [e n=
{v1,v2, . . .}] (set subtraction). For a non-cumulative im-
pact, we use [e :¼ {v1,v2, . . .}], where :¼ is an assignment
of set. For example, take fragrance as an example of a
non-numeric property then Aroma.on() in CH (see
Fig. 1) has a cumulative impact [Env.fragrance



Fig. 3. Environment impact model.
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U={relax}], which adds the relaxation aroma to the
environment. AirCleaner.clean() in AC has a non-
cumulative impact [Env.fragrance :¼ {}], which fresh-
ens the room.

3.3. Environment impact model

In general, the environment impacts vary depending
on the state of the appliances. Indeed, Light.on() does
not increase the brightness when the light is already on.
Therefore we introduce a finite state machine (FSM).

The proposed environment impact model consists of
FSMs, each of which corresponds to an appliance. Let E
be a set of environment properties, and I be a set of envi-
ronment impacts. Also, let d be an appliance. Then, the
environment impact model of d is defined by a FSM Id =
(Sd,Md,Td,D,s0), where

� Sd: a set of states of d
� Md: a set of methods of d
� Td # (Sd �Md � Sd): a set of state transitions
� D(E � Td ? I): an environment impact function
� s0 2 Sd: initial state.

The environment impact function D associates each
state transition with an impact with respect to an environ-
ment property. We assume that all FSMs are in their initial
states at the start. When a service executes a method m of
an appliance d, a state transition t of Id occurs.

Fig. 3 shows the environment impact model of the HNS
appliances. For example, an FSM of TV has two states: OFF
and ON. A transition (T1, TV.on(), T2) has the following
five associated impacts:

- [Env.brightness += 30] /⁄ makes the room a

bit brighter ⁄/
- [Env.soundVolume += 30] /⁄ makes the room
louder ⁄/
- [Env.electricity += 200] /⁄ increases
electricity consumption ⁄/

- [Env.soundContent U= {tv}] /⁄ adds sound

content to TV ⁄/
- [Env.movieContent U= {tv}] /⁄ adds movie

content to TV ⁄/

We assume that the environment impacts are specified
by the user of the proposed method. Each value may be
determined by a specification of an appliance, a layout of
the room, a floor plan of the house, or the outside environ-
ment. This paper does not go into detail of how to con-
struct consistent models for individual houses.

3.4. Total environment impact caused by service

An integrated service generally contains several appli-
ance methods. Hence as the service is executed, the several
environment impacts associated with the methods are
accumulated in the environment.

Thus, for an integrated service S and an environment
property e 2 E, we define the total environment impact to
be caused by S, denoted by TEI(e,S), as the sum of the degree
of impacts given to e by S. Let [t1, t2, . . . , tx] be a sequence of
transitions caused by the execution of S. Then, TEI(S,e) is
defined by:

TEIðe; SÞ ¼
Xx

i¼1

Dðe; tiÞ

We also consider the total impact of multiple services. Let
S1; S2; . . . ; Sn be a sequence of all services currently exe-
cuted in this order. Then the total environment impact
on e is defined by:

TEIðeÞ ¼
Xn

j¼1

TEIðe; SjÞ



Fig. 4. Example of total en
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TEI(e,S) characterizes how much environment impact is
made on e by the execution of a single service S. TEI(e) rep-
resents how much total impact is currently made on e by
all services. Here, a service S might be interested in how
much impact is currently made by other services excluding
itself. For this, we define the exclusive environment impact
XEI(e,S) as:

XEIðe; SÞ ¼ TEIðeÞ � TEIðe; SÞ

which is used to investigate the total impact caused by ser-
vices other than S.

For example, let us consider the total environment im-
pact caused by TVT. As shown in Fig. 1c, TVT executed
three methods: Curtain.close(); Living-

Light.off(); TV.on();. According to Fig. 3 we can
calculate:

TEI(Env.brightness, TVT) = 0 + 0 + 30 = 30

TEI(Env.electlicity, TVT) = 0 + 0 + 250 = 250

TEI(Env.movieContent, TVT) = {} U {} U {tv} = {tv}
TEI(Env.soundContent, TVT) = {} U {} U {tv} = {tv}
TEI(Env.soundVolume, TVT) = 0 + 0 + 30 = 30

Similarly, we also calculate the total impact of the BGM,
assuming that the sound volume (vol) of the music player
is currently 3.

TEI(Env.electlicity, BGM) = 75 + 0

TEI(Env.soundContent, BGM) = {} U {music} =
music

TEI(Env.soundVolume, BGM) = 0 + 3⁄20 = 60
Fig. 5. Integrated services with e
Suppose that TVT and BGM are all the services currently

executed. Then, we have

TEI(Env.brightness) = 30

TEI(Env.electlicity) = 250 + 75 = 325

TEI(Env.movieContent) = {tv}
TEI(Env.soundContent) = {tv} U {music} = {tv,
music}

TEI(Env.soundVolume) = 30 + 60 = 90

vironment impact.
Now we calculate the exclusive impacts of TVT, to see the
impacts caused by services other than TVT.

XEI(Env.brightness, TVT) = 0

XEI(Env.electlicity, TVT) = 75

XEI(Env.movieContent, TVT) = {}
XEI(Env.soundContent, TVT) = {music}
XEI(Env.soundVolume, TVT) = 60
Fig. 4 schematically describes how much environment
impacts are given by TVT and BGM. Compared to the pre-
vious model in Fig. 2 (FI-2), we can see that the proposed
environment impact model can capture the effect of ser-
vices on the environment in much more detail.

4. Introducing requirements of services

4.1. Environment requirement of service

As discussed in Limitation 2, the previous definition of
the environment interactions did not consider a require-
nvironment requirements.



Table 1
Result of environment interaction detection (EnvFI(S1,S2)).

First Service
S1

Second Service S2

ComingHome
(CH)

TVTheater (TVT) BGM (BGM) AirCleaning (AC) Automatic AirCon
(AIR)

ComingHome
(CH)

⁄ ENV-FI (conditional):
XEI (Env.brightness) < 50

⁄ ENV-FI: TEI
(Env.fragrance) � {relax}

#

TVTheater
(TVT)

ENV-FI: XEI
(Env.brightness)
< 50

⁄ ENV-FI: XEI (Env. sound
Volume) < 50 TEI
(Env.soundContent) == {tv}

⁄ ENV-FI: XEI (Env.
sound Volume) < 50

BGM (BGM) ⁄ ENV-FI:
XEI(Env.soundVolume) < 50 TEI
(Env.soundContent) == {tv}

#

AirCleaning
(AC)

⁄ ENV-FI:
TEI(Env.fragrance)
== {}

⁄ ENV-FI: XEI (Env. sound
Volume) < 50

# ENV-FI: TEI
(Env.temperature)
== 25

Automatic
AirCon
(AIR)

⁄ ENV-FI
(conditoinal): TEI
(Env.temperature)
== 25

NV-FI: El
(Env.temperature) = 25

Execution Time of Offline FI Detection
1,000,000.)
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ment. For instance, we did not explicitly consider what TVT
should achieve (or expect) in the environment. Therefore,
within the previous definition TVT and any service that af-
fects the same environment property cause an environment
interaction. Thus we could not distinguish many acceptable
cases from troublesome environment interactions.

It is reasonable to assume that every integrated service
S has a (minimal) requirement for the environment that S
should achieve and expect. For instance, TVT tries to
achieve a theater-like atmosphere for watching a TV,
which can be explained by the following requirement: (a)
TVT must play the TV content, and (b) the surroundings
should be sufficiently dark and peaceful for watching the
TV. We call such a requirement the environment require-
ment of service. For convenience we denote EReq(S) to rep-
resent the environment requirement of a service S.

Our key idea is to describe EReq(S) by a condition de-
fined over the total and exclusive impacts of S, namely,
TEI(e), TEI(e,S) and XEI(e,S). For instance, the above condi-
tion (a) of TVT can be described by:

TEI(Env.movieContent) == {tv} and
TEI(Env.soundContent) == {tv}

which states that movie and sound content in the room
must be only from the TV (== represents an equality).
The above (b) can be represented by:

XEE(Env.brightness,TVT) < 50 and

XEE(Env.soundVolume,TVT) < 50
Table 2
Comb(n,k): number of combinations to be checked (an,k = 0.4).

n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

k = 2 20 90 210 380 600 870
k = 3 24 288 1092 2736 5520 9744
k = 4 19 806 5242 18,605 48,576 105,235
k = 5 8 1935 23,063 119,071 408,038 1,094,446
meaning that impacts on the brightness and sound volume
coming from other services must be minimal. In specifying

a condition with an environment impact, operators ==, !=
(equality), <, <=, >, >= (comparison) are used for the nu-
meric properties. For non-numeric properties we also use
set operators like �, # , �, �. We assume that EReq(S) is
specified by the home user such that EReq(S) represents
what the user desires of S. EReq(S) should not contradict
to the functionality of S, however, it does not necessarily
cover the full functionality of S.

Fig. 5 shows the four integrated services with their
environment requirements. In this example, EReq(CH) rep-
resents a modest requirement that the relaxation fragrance
should at least be provided. EReq(TVT) is the same as the
above. EReq(BGM) represents that BGM wants music to
be contained in the environment, although it does not care
about other sound content. EReq(AC) states that all smoke
and fragrance are expected to be eliminated.

4.2. Environment constraint

Every house usually has a set of rules (i.e. constraints)
that the user has to follow in order to assure safe and
wholesome living [11]. Such rules include ‘‘electric power
usage must be less than X kW’’, or ‘‘maximum sound vol-
ume should not exceed Y db’’. In addition to the environ-
ment requirements, such rules also have to be satisfied
1
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Fig. 6. Execution time of offline detection.



Fig. 7. experimental room of CS27-HNS.
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by the integrated services. We call such rules environment
constraints.

We assume that the environment constraint is a global
invariant, denoted by G, and is defined independently of
the services or appliances. In this research, we define G
as a condition over the total environment impact, TEI(e).
For instance, an environment constraint ‘‘concurrent elec-
tric power usage must be less than 2000 kW’’ is described
as ‘‘TEI(Env.electricity) < 2000’’. Each service S must be cre-
ated to satisfy G, also EReq(s) should be given without vio-
lating G.
5. New definition of environment interactions

Based on the environment impacts and the environ-
ment requirements, we give a new definition of environ-
ment interactions. According to its principle, a feature
interaction is an inconsistent conflict among multiple ser-
vices each of which works correctly [4,12,13]. Therefore, in
the context of the HNS, the execution of every service S
must satisfy the associated environment requirement
EReq(S), as well as the environment constraint G. We repre-
sent this condition as follows:

S ‘ EReqðsÞ ^ G

It can be understood that feature interactions occur when
the above condition is violated by the execution of multi-
ple services. Let S1 and S2 be integrated services, and let
S1; S2 be a sequence of service executions, where S1 and
S2 are executed in this order. Then, we define the environ-
ment interaction between S1 and S2, denoted by EnvFI(S1, -
S2), by the following condition:

EnvFIðS1; S2Þ () ½S1 ‘ EReqðS1Þ ^ G� ^ ½S2 ‘ EReqðS2Þ ^ G�
^ :½S1; S2 ‘ EReqðS1Þ ^ EReqðS2Þ ^ G�

The first line represents that both S1 and S2 work normally
for the environment requirement and constraint. The sec-
ond line means that the execution of S1 and S2 does not sat-
isfy either EReq(S1), EReq(S2) or G. Note in EnvFI(S1,S2) that
S1 and S2 are not commutative, since the condition involves
the execution order of S1 and S2. We extend the above def-
inition to describe n-way environment interactions, Env(S1, -
S2, . . . , Sn), as follows.

EnvFIðS1;S2; . . . ;SnÞ():EnvFIðS1;S2 . . . ;SiÞði¼2;3; . . . ;n�1Þ
^:½S1;S2; . . . ;Sn ‘ EReqðS1Þ^ 	 	 	^EReqðSnÞ^G�

The above condition means that the first n � 1 services do
not cause environment interactions, and that adding an nth
service violates the environment requirements or
constraint.

The proposed definition EnvFI(S1,S2) is basically defined
on the sequential execution, S1; S2, of two services. Let us
see what happens if two services are executed in parallel,
denoted by S1kS2. In S1kS2 the appliance methods of the
two services interleave. However, the total environment
impact caused by S1kS2 is the same as that by S1;S2, because
the sum operation is generally commutative and associa-
tive. Therefore, as long as the requirement is violated (i.e.
EReq(S1) ^ EReq(S2) ^ G does not hold) at the end of service
execution EnvFI(S1,S2) can characterize environment inter-
actions for S1kS2. On the other hand, during S1kS2 suppose
that a requirement violation occurs briefly and disappears
at the end. Such a transient environment interaction is not
detected by the proposed method. To capture it precisely
we need more powerful logic for EReq(Si). Although we
are optimistic about transient interactions in the sense that
they will be resolved at the end, detailed investigation will
be left for future work.
6. Case study

6.1. Offline detection of environment interactions

Using the new definition of environment interaction
we attempt to detect all the potential environment inter-
actions among the five practical integrated services:
Coming Home Service (CH), TV Theater Service (TVT),
BGM Service (BGM), Air Cleaning Service (AC), and Auto-
matic Air-Conditioning Service (AIR). The first four ser-
vices are the same as those introduced in the previous
sections. The Automatic Air-Conditioning Service (AIR)
automatically controls the air-temperature using an air-
conditioner. When a user enters a room the air-condi-
tioner is turned on to a designated temperature (25 �
C, for example). In this case EReq(AIR) is TEI(Env.tem-

perature) == 25.
To conduct the case study we have implemented a

prototype tool, which performs offline detection of the
environment interactions. The tool was written in Java,
comprising about 6300 lines of code, and technical de-
tails can be found in [14]. The response time of the tool
for checking pair-wise interactions was from 328 ms to
360 ms, using a PC with Intel Core2Duo 2.0 GHz and
960 MB memory.

Table 1 shows the result of pair-wise environment
interaction detection. Each row represents a service S1

that is firstly executed, while the columns represent a
service S2 that follows S1. Each entry identifies whether
or not environment interaction EnvFI(S1,S2) occurs, based
on the proposed new definition. In the table we omit the
appliance interactions due to space limitations. Entries



2 If both services share the same air-conditioner they cause an appliance
interaction. However this is beyond the scope of this paper.
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with ⁄ represent environment interactions that could not
be reasonably explained by the previous method. Entries
with # represent cases that were regarded as environ-
ment interactions by the previous method. We explain
some of the detected interactions.

ENV-FI (TVT, CH): CH occurs while TVT is being exe-
cuted. Then the living light and the
entrance light are turned on. This
increases the brightness of the room,
which ruins the theater-like atmo-
sphere required for TVT. This interac-
tion corresponds to FI-2 in Section 1,
and can be also characterized by the
previous method.

ENV-FI (CH, TVT): TVT occurs after CH. CH does not
require the light to be turned on.
Hence there is no problem for TVT
turning off the living light. The inter-
action is conditional, depending on
the entrance light. If the entrance
light does not affect the brightness
of the living room by more than 50
lux, there is no interaction. This fur-
ther explains what was discussed in
Limitation 2 in Section 2.3.

ENV-FI (TVT, BGM): While TVT is executed, BGM occurs.
The BGM adds music to the sound
content of the room, which violates
EReq(TVT) that the sound content
must be only that of the TV. This
interaction corresponds to FI-3 dis-
cussed in Limitation 1 in Section 2.3.
The interaction is now successfully
explained by the proposed method,
by introducing the non-cumulative
environment property and the envi-
ronment requirement with the exclu-
sive impact.

ENV-FI (CH, AC): CH is followed by AC. The relaxation
fragrance required in CH is removed
by AC, which corresponds to FI-4 in
Section 1. Introducing an environ-
ment impact on the non-cumulative
property (based on set operations)
can reasonably explain this interac-
tion. Note that the interaction is
detected by another condition if we
change the execution order. Env-FI
(AC, CH) is detected, since adding fra-
grance by CH violates the condition
that the air should be freshened.

There are three cases where the proposed method
states no interaction, but the previous method detected it
as an interaction. For instance:

CH vs AIR: Both CH and AIR write Env.tempera-
ture. If the two services have differ-
ent temperature settings for the air
conditioner, the previous method
states that this is an environment
interaction.2 However, since CH does
not define any requirement on the
room temperature, this case should
not be an undesirable environment
interactions.

6.2. Evaluating scalability

When the number of services increases, the number of
service combinations grows combinatorially. For instance,
in order to detect pair-wise interactions among 5 services
we simply check 20 (= 5P2) combinations, as shown in
Table 1. For 20 services, however, we have to check 380
combinations. It is too expensive to manually check all of
these combinations thus we need an automated tool for
managing the FIs among many services.

As mentioned in Section 6.1, we have implemented a
tool that conducts the offline detection of environment
interactions. We here evaluate the scalability of the tool
for a larger number of services. For the evaluation we
introduce three kinds of parameters:

� n: the number of all services given.
� k: the number of services to be checked in FI detection.
� Comb(n,k): the number of combinations checked for

detecting k-way environment interactions (see Section
5) among n services.

For instance, the case study in Section 6.1 is character-
ized by a case where n = 5, k = 2, Comb(5,2) = 20. Next let
us conduct three-way interaction detection (i.e. k = 3).
According to the definition, three-way interaction requires
a condition that the previous two services cause no inter-
action. Therefore we first choose 9 pairs out of the 20,
which are interaction-free combinations (see Table 1).
For each of the 9 pairs we pick a third service from the
remaining 3. So we have Comb(5,3) = 9 
 3 = 27 in this case.

We try to generalize it. Let an,k be a ratio of interaction-
free combinations out of total Comb(n,k) combinations.
Then, we can calculate Comb(n,k) as follows.

Combðn; kÞ

¼ nP2 ðk ¼ 2Þ
an;k�1 
 Combðn; k� 1Þ 
 ðn� kþ 1Þ ðk P 3Þ

�

Although an,k depends on a given set of services as well as
requirements we use an empirical value 0.4, estimated
from the previous case study. Table 2 enumerates
Comb(n,k) for (5 6 n 6 30), (2 6 k 6 5). As seen in the table,
Comb(n,k) grows as n and k increase. The growth is espe-
cially significant for the increase in k. Note that n charac-
terizes the number of services deployed in the HNS. From
a practical point of view, n = 30 is a sufficiently large num-
ber of services.

By multiplying Comb(n,k) by the average execution
time of the tool we evaluate the scalability of the tool for
practical settings. Fig. 6 plots the estimated execution time
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of the tool. The horizontal axis represents the number of
services (n), and the vertical axis represents the execution
time in seconds. For pair-wise or three-way FI detection
(i.e. k = 2,3), our tool can be applied well to 30 services.
Even for the case (n,k) = (30,3), the tool performs interac-
tion detection within one hour.

However, for the cases with k P 4 the tool takes quite a
long time for many services, due to combinatorial explo-
sion. Therefore for the cases with k P 4, we should con-
sider applying online FI detection. That is the condition
EnvFI(S1, . . . ,Sk) is evaluated at runtime, instead of check-
ing all possible combinations of services beforehand.

7. Discussion

7.1. Advantage and limitations

The proposed environment impact model enables the
fine-grained modeling of interactions between appliances
and the environment. Also the proposed environment
requirement explicitly defines what is desired by the ser-
vice. As a result, the proposed method can more precisely
capture the environment interactions in the HNS. As seen
in the case study the proposed method was able to detect
environment interactions that could not be reasonably ex-
plained by the previous method. It could also distinguish
some acceptable cases from undesirable interactions.

The principle of the proposed method is to check
whether the combined behaviors of multiple services still
satisfy all the requirements of the services. In this sense
our approach is straight-forward and similar to existing
FI methodologies. Although one may consider that it is
not state of the art, we believe our contribution adapts
the basic principle to environment interactions in HNS.

We are currently developing an efficient detection
method for environment feature interactions. This will be
Fig. 8. CS27-HNS integrat
integrated into our practical home network testbed CS27-
HNS [7], shown in Fig. 7. Using the integrated service man-
ager in Fig. 8, CS27-HNS currently manages appliance
interactions and previous environment interactions. The
environment interaction with the proposed new definition
will be soon available in the service manager.

A limitation is that the proposed method heavily relies
upon the given environment impact model and the envi-
ronment requirements. Therefore an inappropriate impact
model may lead to serious interactions being missed, or
mis-detection of desirable cases as feature interactions.
The same thing holds for the environment requirements.
This problem of specifying a consistent system model
and properties is also seen in general verification and val-
idation methodologies [11]. How a consistent impact mod-
el and requirements are to be described is left for our
future research.

There are also issues of inter-room interactions and side-
effects. As mentioned in Section 2.1, we assume that the
HNS is defined for every isolated room. Furthermore, we
do not count the side-effect of the appliances methods.
Moreover, we presume that an integrated service is de-
fined by a simple sequence without loops or branches.
An extension to more sophisticated models is also in our
future work.

7.2. Related work

Kolberg et al. [4] and Wilson et al. [9] presented run-
time feature interaction detection methods in a smart
home. In the methods, environment interactions were de-
tected by a condition where different services perform
incompatible resource locking towards the same environ-
ment property. However the methods did not determine
the level of the environment impacts or the explicit
requirements of the services.
ed service manager.
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Metzger et al. [10,15] demonstrated an offline feature
interaction detection method for an embedded control
system. The method captures dependencies between the
system and the environment with a goal-oriented require-
ment model. However the method basically only managed
the static structure of the dependencies and did not con-
sider the degree or the type of dependency, as are consid-
ered in our impact model.

Matsuo et al. [8] proposed a model checking method to
detect feature interactions in the HNS. However their
formalization of the environment interactions only consid-
ered the direction of the impact as we discussed in Section
2.3.

The policy conflict is a well-studied notion in the field of
policy-based system management [16,17]. There are sev-
eral studies that characterize feature interactions in smart
space as policy conflicts (e.g., [18–20]). However these
existing methods basically only deal with the action con-
flicts on the appliances, and do not adequately cover the
indirect conflicts on the environment.

In a general sense, the proposed definition of the envi-
ronment interactions follows the traditional problem
frame with the entailment relation (‘), which was recently
discussed with regard to the context-sharing problem [21].
In our problem, the shared context is specialized to the
environment (i.e. room, entrance and house). Thus the
taxonomies based on the context-sharing problem may
help us devise context-sensitive detection and resolution
schemes for the environment interactions.

There are many studies on context modeling and reason-
ing techniques [22]. They are relevant to the management
of environmental contexts within smart spaces. As far as
we have investigated, however, there is no existing tech-
nique that extensively focuses on the feature interaction
on the environment.
8. Conclusion

In this paper we have proposed a new definition of
environmental feature interactions in the context of home
network services. The proposed method introduces an
environment impact model for the fine-grained modeling
of interactions between home appliances and the environ-
ment. It also considers the environmental requirement of
services to explicitly capture the desired behaviors of
services towards the environment. It was shown in the
case study that the proposed method successfully detects
environment interactions that could not be reasonably
explained by the previous method.

The following issues are considered for our future work:
(a) development of feature interaction resolution for the
new environment interactions, (b) investigation of meth-
odologies creating consistent impact models and require-
ments, (c) extension to more sophisticated models
(services with loops and branches, transient interactions,
interroom interactions and side-effects), and (d) general-
ization for other interested domains, such as building con-
trol, factory control and smart cities.
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