
Implementing Personal Home Controllers on
Smartphones for Service-Oriented Home Network

Keisuke Tokuda, Shinsuke Matsumoto, Masahide Nakamura
Graduate School of System Informatics, Kobe University
1-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-8501, JAPAN

Email: tokuda@ws.cs.kobe-u.ac.jp, {shinsuke, masa-n}@cs.kobe-u.ac.jp

Abstract—The human interface devices for the home network
system (HNS) should be flexible enough to reflect individual pref-
erences and lifestyles of home users. To fill the requirement, this
paper presents a novel framework that enables Personal Home
Controllers (PHC) on smartphones. The proposed framework is
designed so that a user can freely design screen layouts with
buttons and pictures, and can define favorite HNS operations on
the layouts. The first part of our contribution is PHC Framework,
which dynamically implements a PHC based on a given user
definition. The second part is PHC Creater, a GUI application
which supports the user to create the user definition. The
proposed framework is implemented for Android mobile devices.

We conduct an experimental evaluation, where subjects create
PHCs for operating an actual HNS. The experimental result
shows that every subject creates a unique PHC with his favorite
motif, and that most subjects find usefulness and pleasure in
creating their own PHCs.

Index Terms—personalized service, mobile platform, home
network system, service oriented architecture

I. INTRODUCTION

In the next-generation smart home, house-hold appliances,
equipment and sensors (e.g., TVs, lights, air-conditioners, cur-
tains, temperature sensors) are connected with network. The
home network system (HNS) [1] orchestrates such networked
appliances to provide value-added services for home users.
The service-oriented architecture (SOA) is shown to be a smart
solution to achieve interoperability among heterogeneous de-
vices in the HNS [2][3]. We have also developed a service-
oriented HNS, called CS27-HNS [4], where the conventional
appliances with infrared controllers were wrapped by Web
services. The CS27-HNS is yet evolving with new applica-
tions developed, such as integrated services [4], the energy
visualization service [5], the sensor service framework [6] and
interactive voice controls [7].

In general, the human interface devices for operating the
HNS has been developed by system vendors. Typical interfaces
include remote controllers, control panels, ready-made appli-
cations on PCs or hand-held devices [4]. However, we found
in our experience that such ready-made interfaces were not
necessarily satisfactory for end users. The reason is that since
the HNS is directly linked to the daily life, the usage varies
significantly from person to person, from house to house.
Thus, the interface must be flexible enough to reflect individual
preferences and lifestyles of users.

The goal of this paper is to implement a framework that al-
lows individual user to own a personal home controller (PHC).

The PHC is a home controller that can be highly personalized
for every user. The proposed framework is designed so that a
user can freely design screen layouts with buttons and pictures,
and can define favorite HNS operations on the layouts. We
also assume that the PHC is realized on a mobile platform
(smartphone, PDA, portable game device, etc.). Thus, every
member of a family will use his/her own home controller in
the future.

To achieve the goal, our framework is implemented by two
main components: PHC framework and PHC creater.

PHC framework: Application framework that separates a
user definition of a PHC, from the control program of the
HNS. The framework prescribes two languages: PHC layout
language (PHC-LL) and PHC action language (PHC-AL).
They describe the user-defined layouts and actions of the PHC,
respectively. When a pair of files in PHC-LL and PHC-AL are
given, the framework interprets the languages and dynamically
realizes a PHC on the mobile platform. The PHC framework
is installed in a mobile platform.

PHC creater: GUI application that supports a user to create
the definition files in PHC-LL and PHC-AL. The creater
provides an intuitive visual programming environment, where
a user can construct a screen layout consisting of backgrounds
and buttons. The creater also provides an input form, with
which a user can define an action as a sequence of operations.
The action can include HNS operation, Web service invoca-
tion, forward screen, sound playback. The creater can export
and import PHC-LL and PHC-AL files, in order to share and
customize the PHC. The PHC creater is implemented as a PC
application.

We implement the proposed framework for Android smart-
phones. Using the implementation, we conduct an experiment
where 10 graduate students create PHCs operating a TV and
a fan within the CS27-HNS. The experimental results shows
that every subject creates a unique PHC with his favorite motif,
and that most subjects find usefulness and pleasure in creating
their own PHCs.

II. PRELIMINARIES

A. Home Network System (HNS)

A home network system (HNS) orchestrates various house-
hold appliances, sensors and equipment via network. Each net-
worked appliance exhibits the Application Program Interface
(API) to the network. The API allows users or external agents

2012 Fifth International Workshop on Selected Topics in Mobile and Wireless Computing

978-1-4673-1430-5/12/$31.00 ©2012 IEEE 777

Fig. 1. CS27-HNS experimental room

to monitor and control the device. A HNS typically involves
a home server, which manages all the networked devices and
executes value-added services.

Our group has been developing a practical HNS, called
CS27-HNS [8], based on the service-oriented architecture
(SOA). Figure 1 shows the experimental room of the CS27-
HNS. As shown in the figure, various appliances like TV, fan,
air-conditioner, curtain, lights are installed. Every appliance is
abstracted as a vendor-neutral service, encapsulating a device
proprietary protocol (e.g., infra-red, serial COM, ZigBee, etc.)
under the service layer. Since APIs are deployed as Web
services, the appliances can be controlled by REST or SOAP.
For example, accessing to the following URIs turns on a TV
and sets the channel to no.8.

http://cs27-hns/TVservice/on
http://cs27-hns/TVservice/channel?num=8

B. Home Controller as Human Interface of HNS

To allow human users to operate appliances and services in
the HNS, we need a human interface. The interface is often
called home controller. As for the legacy appliance, a remote
controller (often with infra-red communication) was bundled
to every appliance. In the HNS, multiple appliances can be
aggregated within a single home controller, with which a user
can control all the appliances in the HNS. The home controller
is basically developed by HNS vendors.

Figure 2 enumerates home controllers that we have so far
developed for the CS27-HNS. The figure contains the flash
interface on a wide-screen TV, the mobile phone interface, the
wii-mote interface, the PC widget, the touch panel interface,
the Nintendo DS interface.

In [7], we also developed an interactive voice control
system for the CS27-HNS. In the system, a user just speaks
a command like “Turn on a fan” to operate the appliances.
The system also accepts context words like “hot” or “dark” to
reason implicit user requirements.

Fig. 2. Conventional home controllers for CS27-HNS

C. Personalizing Home Controllers

Although we have developed various home controllers, we
fount it quite difficult to satisfy all the users. In the context
of the HNS, there is a fact that installed appliances are
different from house to house. Also, depending on the lifestyle,
frequency in use of appliances varies from person to person.
Therefore, the ready-made interface does not necessarily sat-
isfy such varieties of users. The above observation motivated
us to personalize the home controller.

We define the term personal home controller (PHC, for
short) to refer a home controller whose user interface can be
freely defined based on user’s preference. Due to its nature,
the PHC would be realized on smartphones belonging to
individual users.

D. Requirements of Personal Home Controllers

The goal of this paper is to provide a smart solution to
implement the PHC. To clarify the scope of this paper, we
here address the following two requirements.

Requirement R1: A user should be able to define user
interface independently of control programs of the HNS.
The home controller is generally composed of a user interface
and control programs. The user interface defines screen layouts
and callback actions when events occur (e.g., button pressed).
While, the control program invokes designated appliance API
of the HNS on receiving a request from the interface. In
our previous implementations, the interface and the control
program were tightly coupled. Therefore, the user could not
define the user interface only. To achieve the PHC, we need a
mechanism to decouple the user interface definition from the
control program.

Requirement R2: A user should be able to create the
PHC as easily as possible.

To satisfy a variety of users, the effort for creating the PHC
should be as small as possible. For this, we need an intuitive
and productive support tool for creating the PHC.

We also clarify the target users assumed in this paper.
Assumption on target users: We assume that users who

just want to use the PHCs are able to use smartphones, and

778

exports

XML Parser

Layouts

(PHC-LL)

Layout def.

Action def.

Event

listener
Rendering

Program

PHC Core

displays

Smartphone

controls

User

HNS

Controller

HNS

PHC Definition

edits

notifiesActions

(PHC-AL)

stores

reads

reads

listens

PHC

Creater

PHC Framework

reads

Fig. 3. Architecture of proposed framework

no other special knowledge is required. We also assume that
users who want to create own PHCs should be familiar with
basic PC operations like using editors and drawing images.
However, no special knowledge on the HNS or programming
is required.

III. PERSONAL HOME CONTROLLER FRAMEWORK

A. Overview

In order to satisfy Requirement R1, we propose the Personal
Home Controller Framework (PHC framework). Figure 3
shows the overall architecture of the proposed framework. In
the figure, the PHC framework is shown as a dotted rectangle.
The PHC framework separates the definition of the PHC
(PHC definition) from other programs of the home controller
(described as PHC core).

The PHC definition is given as a pair of XML files: a layout
file and a action file. The layout file defines screen layouts of
the PHC, whereas the action file specifies actions of the PHC.
These files are respectively described in a domain specific
languages called PHC-LL and PHC-AL, as explained later.

The PHC core parses the PHC definition and stores the
layouts and actions in a DB. Based on the layout definition, the
rendering program displays a PHC on the smartphone. When a
user press a button within the PHC, the event listener notifies
the HNS controller of the button pressed. Finally, based on the
action definition, the HNS controller identifies an appropriate
HNS operation, and invoke it.

B. Description Languages for PHC Definition

We here introduce two kinds of description languages for
the PHC definition. The one is the PHC layout language
(PHC-LL) and another is the PHC action language (PHC-AL).
The PHC-LL defines the screen layouts of a PHC, specifying
screens, background, buttons and callbacks. On the other
hands, the PHC-AL specifies actions of a PHC to be executed
when the buttons are pressed. Both languages are represented

Screen

-screenName

-backGround

Button

-x

-y

-width

-height

-initVisible

-callBack

-visibleButtons

-invisibleButtons

LayoutDefinitionLayoutDefinition

1

1..*

ActionDefinitionActionDefinition

-actionName
Action

Task

1

TextButton

-text

-color

-textColor

-textFont

ImageButton
- picture

1..*

1 1

PHC DefinitionPHC Definition

1

1..*

1

Invokes

1

1..*

WebService

Invocation

Forward

Screen

Sound

PlayBack

Action

Reference

Fig. 4. Data structure of PHC definition

in XML. Figure 4 the data structure of the PHC Definition in
a form of UML class diagram, where LayoutDefinition and
ActionDefinition are respectively represented by the PHC-LL
and the PHC-AL.

PHC Layout Language (PHC-LL): As shown in the left
side of Figure 4, the PHC-LL defines the screen layouts as a
collection of screens. A screen is identified by a screen name
and a background color. A screen has multiple buttons. Each
button is characterized by coordinates (x, y), size (w × h)
and visibility. Callback specifies an action that is triggered
when the button is pressed. The attribute visibleButton (or
invisibleButton) specifies buttons to appear (or disappear,
respectively) when the button is pressed. These attributes are
used to put or remove buttons dynamically in the screen. A
image button is a button decorated with a picture. A text button
is a button depicted by colored text.

Figure 5(a) shows an example of PHC-LL. In the figure,
a screen named TOP is defined with a background color
#FFFFFF. In the screen, two buttons TV and DVD-T are
defined. The button TV is placed on the coordinates (65,
32) with the size 148x50. The button is initially visible and
represented as a picture tv_ms.png. When the button is
pressed, the action goTV is called back. Similarly, the button
DVD-T is defined. This button appears as text DVD Theater
with color #000000. The call callback is DVDTheater.

PHC Action Language (PHC-AL): As shown in the
right side of Figure 4, the PHC-AL defines a set of actions.
An action is defined by a set of tasks. A task can be a
Web service invocation, forward screen, sound playback or
action reference. The Web service invocation is a task that
directly triggers a Web-API in the service-oriented HNS. The
forward screen is a task that forwards the current screen to
a designated screen. The sound playback is a task that plays

779

<screen>

<screenName>TOP</screenName>

<backGround>#FFFFFF</backGround>

<buttons>

<button>

<buttonName>TV</buttonName>

<x>65</x> <y>32</y>

<width>148</width>

<height>50</height>

<Visibility>true</visibility>

<picture>tv_ms.png</picture>

<callBack>goTV</callBack>

</button>

<button>

<buttonName>DVD-T</buttonName>

<x>72</x> <y>151</y>

<width>165</width>

<height>60</height>

<visibility>true</visibility>

<color>#ffcccc</color>

<text>DVD Theater</text>

<textFont>30</textFont>

<textColor>#000000</textColor>

<callBack>DVDTheater</callBack>

</button>

</screen>

:

<action>

<actionName>goTV</actionName>

<forwardScreen>TV</forwardScreen>

</action>

<action>

<actionName>TVON</actionName>

<webServiceInvocation>

http:/hns/TVService/on

</webServiceInvocation>

</action>

<action>

<actionName>DVDTheater</actionName>

<actionReference>

TVON

</actionReference>

<webServiceInvocation>

http://hns/LightService/off

</webServiceInvocation>

<webServiceInvocation>

http://hns/CurtainService/close

</webServiceInvocation>

<actionReference>

DVD

</actionReference>

<soundPlayBack>

playDVDTheater.mp3

</soundPlayBack>

</action>

:

(a) PHC-LL (b) PHC-AL

Fig. 5. Example of PHC definition

back a sound within the PHC when the action is executed.
The action reference is a task that calls the another existing
action just like a sub-routine call.

Figure 5(b) shows an example of PHC-AL, where three
actions are defined. The first action goTV forwards the current
screen to TV. The second action TVON invokes Web service
http://hns/TVService/on/, which turns on a TV in
the HNS. The third action DVDTheater contains multiple
tasks that turns on TV by TVON, turns off a light by Web
service, and plays back a sound playDVDTheater.mp3.

C. PHC Core

The PHC core (see Figure 3) dynamically implements a
PHC on a smartphone, based on given PHC definition. We
explain sub-components of the PHC core as follows.

XML Parser: It parses given PHC definition files in PHC-
LL and PHC-AL, and stores the layouts and the actions in a
local data store.

Rendering Program: Interpreting the layouts definition,
the program displays screen images on a smartphone. In the
following, we explain how the screen rendering is performed.
In the explanation, we use <tag> of PHC-LL.

1) Identify a screen (let it be scr) with <screenName>.
The initial (default) screen is TOP.

2) For each button b in scr, set the coordinates of b from
<x> and <y> attributes, where the origin (0, 0) is at
top-left of the screen.

3) Determine the design of the button b. set the size of b
from <width> and <height>. If b is a TextButton,
b is labeled by a string in <text>. The color and
font of the text is set from values of <color> and
. If b is a ImageButton, load the image specified
in <picture>.

4) If the <visible> is true, draw b on the screen.

Event Listener: It captures events that occur in the PHC.
When a user press a button in the PHC, the event listener

notifies which button is pressed of the HNS controller.
HNS Controller: On receiving an event notification from

the event listener, the HNS controller performs the correspond-
ing action. It works as follows.

1) Receive a notification that a button b is pressed from the
event listener.

2) Identify an action act bound to b from the
<callback> attribute of PHC-LL.

3) Derive a set of tasks t1, t2, ..., tn of act based on
<action> of PHC-AL.

4) Execute ti(1 ≤ i ≤ n) one by one. If ti is Web
service invocation, invoke the corresponding Web-API
of the HNS. If ti is forward screen, update the value
of the current screen and tell the rendering program to
refresh the screen. If ti is sound playback, play back
the designated sound file from the smartphone. If ti is
action reference, call another action as a sub-routine.

We have implemented the PHC core for Android mobile
devices. Many parts of the implementation were inspired by
the Struts Web application framework [9]. The code was
written in Java with Android SDK, comprising 2,267 lines
of code. The development effort was about 3 man-months.

D. Example of PHC

Figure 6 shows an example of a PHC, which is implemented
based on the PHC definition in Figure 5. Figure 6(a) represents
the TOP screen. It contains two buttons as defined in Figure
5(a). If a user presses the TV button, the action goTV is called.
In Figure 5(b), we can see that the task of goTV is a forward
screen, and the screen should be forwarded to TV. Hence, the
screen is refreshed to the one in Figure 6(b), which represents
a TV controller.

Although this example is quite simple, the PHC definition
comprises many lines of XML as shown in Figure 5. Thus,
it would be a tedious and unreliable task for a user to write
the PHC definition from scratch. For practical settings with
more appliances and services, it would be almost impossible
to write the definition without fault. Therefore, a certain tool
support is inevitable, as introduced in the next section.

IV. PERSONAL HOME CONTROLLER CREATER

A. Overview

As seen in the previous section, writing the PHC definition
from scratch imposes a huge amount of effort on a user, which
cannot achieve Requirement R2. To cope with the problem, we
present the Personal Home Controller Creater (PHC creater).
The PHC creater is a GUI application intended to support users
to create PHC definitions.

As shown in Figure 3, a user uses the PHC creater to create
and modify his PHC definition. Thanking to the GUI, the user
can edit screen layouts and actions in a much more intuitive
manner, rather than editing the XML files, directly. The layouts
and actions edited on the PHC creater are exported in PHC-LL
and PHC-AL files, which can be used in the PHC framework.

780

DVD Theater

TVTV

(a) Screen TOP (b) Screen TV

OFFON

Vol +

Vol -

Ch ^

Ch v

Back to Top

TVTV

Fig. 6. example of Personal Home Controller

The PHC creater is composed of two editors: layout editor
and action editor. They are supposed to be used in PC. We
explain these editors in the following subsections.

B. Layout Editor

The layout editor supports users to create the screen layouts
of the PHC. Figure 7 depicts a screenshot of the layout editor.
A user first creates a new screen, puts buttons on the screen,
finally sets the parameters on each button.

The right side of Figure 7 displays a lot of button images.
A user basically drags a button, and drops to a screen in left
side. The size and position of every button can be changed
by mouse operations. There are many button images preset
in the layout editor, which cover most of typical household
appliances. A user can also register custom button images to
the editor.

Once a user places a button on the screen, the user can
configure parameters to the button. Figure 8 shows the element
pane, where a user can specify the parameters of the button.
The input field corresponds to the tags of the PHC-LL. In this
figure, parameters of a button TV are specified. The created
layout is exported as a PHC-LL file.

C. Action Editor

The action editor supports users to define actions. Figure 9
shows a screenshot of the action editor.

A user first inputs an action name and description in
Action Description section. Then, the user adds tasks to Home
Appliance Operation section. A user inputs parameters of a
task in Add Tasks section. The type of each task is either
ref or web service. The type ref corresponds to the
reference to the existing action, and the type web service
corresponds to the Web service invocation. In the figure, a user
is about to add a pre-defined action LightOff. All the tasks
added so far are enumerated in TaskList section.

Tasks of forward action and sound playback can be specified
in Device Action section. These actions are performed on the
target smartphone. Each action can contain at least one forward

Fig. 7. Layout editor of PHC creater

Fig. 8. Element pane of layout editor

action and at least one sound playback. In this example, a user
defines an action GoodNight, which turns off TV and light
and close curtain in the living room.

Once an action is created, the editor stores the action in a
persistence storage for future reuse. The action editor can also
import a file of pre-defined tasks, so that the user can reuse
the existing HNS operations easily.

D. Implementation of PHC creater

We have implemented the PHC creater based on an open-
source software DroidDraw [10]. The code was written in Java
with Android SDK, comprising about 11,000 lines of code.
The development effort was about 2.5 man-months.

V. EXPERIMANTAL EVALUATION

A. Design of Experiment

We have conducted an experiment, where subjects create
their own PHCs. The objective of the experiment is to evaluate
the proposed framework from the following three viewpoints.

1) validity of personalization of home controller.
2) capability of the PHC framework
3) usability of the PHC creater

Total 10 subjects participated the experiment, consisting of
7 graduate students and 3 undergraduates. They were all males

781

Fig. 9. Action editor of PHC creater

in their 20’s. The experiment was conducted in our CS27-HNS
experimental room (see Section II-A). As for a smartphone for
the PHC, we prepared Android Dev-Phone One (Android 1.6),
ZiiO7 (Android 2.1), and GALAXY Tab (Android 2.2). For
the appliances controlled, we used a plasma TV (Panasonic
VIERA TH-58PZ800), a fan (Doshisha GIR-350), a ceiling
light (Panasonic HHFZ5810) and a curtain (NAVIO power
track) installed in the CS27-HNS. The API references for
operating these appliances were registered in the PHC creater.

In the experiment, we told the subjects a certain functional
requirement of a home controller. Then, each subject individ-
ually created a PHC that conformed to the requirement. We
measured the development effort (i.e., time) taken for each
subject. After the development, we interviewed each subject
to ask the satisfaction of his created PHC. Also, we asked
questions about the above three viewpoints.

B. Requirement and Tasks

The functional requirement of the PHC was as follows:

• For the TV, the PHC must be able to power on/off, change
the input mode TV and DVD, set sound volume and
change channels.

• For the ceiling light, the PHC must be able to turn on/off.
• For the fan, the PHC must be able to switch on/off, swing,

change wind volume.

We did not impose any non-functional requirements such
as layout designs, button images, the number of screens, etc.
These were up to the subjects. Some of them prepared favorite
pictures by themselves. Some used the preset materials. For

TABLE I
TIME TAKEN FOR PHC CREATION (IN MINUTES)

Layouts Actions
Task 1 Task 2 Task 3 Task 4

Subject Design Create Modify Create
A 57 22 8 23
B 57 5 9 26
C 77 40 24 8
D 57 19 16 33
E 210 12 30 10
F 330 30 30 20
G 132 150 45 19
H 144 137 19 22
I 83 227 24 23
J 114 116 29 35

Average 126 76 23 22

fine-grained effort measurement, the subjects were instructed
to create the PHC, in accordance with four tasks.

Task 1 (Layout Design): Each subject sketches screen
layouts of the PHC on a paper or a PowerPoint. Also the
subject collects materials (icons, pictures, sounds) necessary
for the design.

Task 2 (Layout Creation): Based on the design, each
subject creates his own PHC, using the PHC creater. Since
all the necessary actions were already set in the PHC creater,
the subject just refers the preset one.

Task 3 (Layout Modification): To see the maintainability
of the PHC, we change the functional requirement, and ask
the subject to modify the PHC. The changes are:

• Change the TV/DVD input modes to game/PC modes.
• Add one more ceiling light.
• Delete the fan control.

Task 4 (Action Creation): Each subject creates the follow-
ing two actions.

1) GoodNight, consisting of (a) turn off the TV, (b)
switch off the ceiling lights and (c) close the curtain.

2) GoodMorning, consisting of (d) open the curtain, (e)
turn on the ceiling lights and (f) turn on the TV.

After finishing these tasks, each subject operated the appli-
ances using the PHC he created.

C. Result

Figure 10 shows screenshots of the PHCs created by the ten
subjects (Subjects A, B, ..., I). Figure 11 shows that the user
is controlling the TV by PHC in Galaxy Tab. We confirmed
that all the PHCs satisfied the functional requirement. We can
see that every subject created a unique PHC with his favorite
motif, reflecting personal preferences on the home controller.

TableI summarizes the time taken for PHC creation, which
is shown in minutes. The average time taken for Tasks 1 to 4
were 126 mins, 76 mins, 23 mins and 22 mins, respectively.
Roughly speaking, more than half of the time was spent to
consider the layout design and to collect the materials in
Task 1. We can see that the layout modification (Task 3) and
the action creation (Task 4) were smoothly performed within
relatively short time. The effort spent for Tasks 1 and 2 varied

782

A

IG

E

J

C D

(c) The Pokemon Company/Game software

/Pokemon Fire Red

(c) Inc. AKS/AKB48 (c) Yngwie J. Malmsteen

/Trilogy

FB

H

(c) Nintendo Co./Game software/

Super Mario Bros

Fig. 10. PHC layouts which created by the subjects

Fig. 11. Controlling the TV by PHC in Galaxy Tab

from one to another, depending on the devotedness of the
subject to his PHC.

D. Evaluation

Based on the result and comments gathered in the subse-
quent interviews, we discuss the three viewpoints mentioned
in Section V-A. As for the validity of the personalization
of home controllers, we got a confidence because such a
variety of PHCs were created in the experiment. Also in
the interviews, many positive comments were obtained. For

instance, “I enjoyed the process of PHC creation”, “I love my
PHC I created”, “My favorite appliance can be arranged in the
best position”, “I can easily adapt the controller to changes of
my preference and lifestyle”.

Next, we discuss the capability of the PHC framework. We
believe that the framework supports basic features to imple-
ment the home controllers. However, there were requests for
improvement. Some subjects said that they want to show the
status of the appliances and sensor values on the PHC. Another
subject wanted to use gesture to operate the appliances. These
features are not supported in our current framework. We will
consider them in the future work.

Finally, we evaluate the usability of the PHC creater. In
Table I, we can see that subjects G, H, I and J spent long
time in Task 2. Hence, we suspect a usability problem.
However, there was no negative comment from the subjects.
They devoted themselves to create original and fancy products,
which resulted in the long creation time. In the experiment, we
found that the subjects tends to make mistakes in specifying
URIs of web service invocation. We need to cope with this to
improve the usability.

VI. RELATED WORK

Crespo and Bier [11] proposed WebWriter that supports non-
experts to create Web pages and applications. Since WebWriter
covers general Web applications, it may be applied to the
PHC creation. However, our framework is specialized to the
home controller. Hence, we expect that the effort for the PHC
creation will be significantly smaller than that of WebWriter.

783

Many studies have been conducted to implement user
interface adapted to user’s individual preference. Studies of
Liu [12] and Lassila [13] automatically generate better user
interface based on user profiles, status, and operation his-
tory. Kryzystof [14] proposed a system which automatically
switches to preferable widgets, according to user’s preference
and used devices. For example, when a user operates a printer,
if he has a mouse, then the system displays a drop-down menu.
If he uses a touch panel, the system displays a list menu. These
studies basically deal with interfaces automatically adapted
to individual users. Our approach differs in that individual
users create interfaces by themselves. However, the adaptive
interface does not conflict with the PHC, and should be
complementary to provide more convenient personal interface.

VII. CONCLUSION

In this paper, we have proposed a novel framework that
creates the personal home controllers (PHC) for the home net-
work system. Our contribution consists of the PHC framework
and the PHC creater. The PHC framework is an application
framework that dynamically implements a PHC on a smart-
phone from user-defined layouts and actions. The PHC creater
is a GUI application that helps users create the PHC definition.
We have conducted an experiment with ten subjects. The result
showed that every subject was able to create a PHC reflecting
individual preference, and that most subjects were satisfied
with created PHCs.

In our future work, we plan to extend the PHC framework
so as to include appliance status and sensor values within
the PHC. Moreover, we refine the features of PHC creater as
requested in the experiment. Introducing the adaptive interface
to the PHC is also an interesting topic.

ACKNOWLEDGMENT

This research was partially supported by the Japan Ministry
of Education, Science, Sports, and Culture, Grant-in-Aid for
Young Scientists (B) (No.21700077) and Research Activity
Start-up (No.22800042).

REFERENCES

[1] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. Matsumoto,
“Adapting legacy home appliances to home network systems using web
services,” in International Conference on Web Services (ICWS2006),
September 2006, pp. 849–858.

[2] C. L. Wu, C. F. Liao, and L. C. Fu, “Service-oriented smart home
architecture based on osgi and mobile agent technology,” in IEEE Trans.
on Systems, Man, and Cybernetics (SMC), Part C, vol. 37, no. 2, 2007,
pp. 193–205.

[3] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and C. Marin, “A
dynamic-soa home control gateway,” in Proc. the 3rd IEEE International
Conference on Services Computing (SCC), 2006, pp. 463–470.

[4] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. Matsumoto,
“Constructing home network systems and integrated services using
legacy home appliances and web services,” Int’l J. of Web Services
Research, vol. 5, no. 1, pp. 82–98, 2008.

[5] H. Igaki, H. Seto, M. Fukuda, and M. Nakamura, “Mashing up multiple
logs in home network system for promoting energy-saving behavior,” in
Proc. of 8th Asia-Pacific Symposium on Information and Telecommuni-
cation Technologies (APSITT2010), vol. CDROM, June 2010.

[6] M. Nakamura, S. Matsuo, S. Matsumoto, H. Sakamoto, and H. Igaki,
“Application framework for efficient development of sensor as a service
for home network system,” in the 8th IEEE 2011 International Confer-
ence on Services Computing (SCC), 2011, pp. 576–583.

[7] N. Matsubara, S. Matsumoto, and M. Nakamura, “Characterizing user
habituation in interactive voice interface experience study on home
network system,” in Int’l Conf. on Information Integration and web-
based Applications & Services (iiWAS2011), 2011, pp. 375–378.

[8] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented comput-
ing,” Communication of the ACM, vol. 46, no. 10, pp. 25–28, 2003.

[9] “Struts,” http://www.struts.org/.
[10] “Droiddraw,” http://droiddraw.org/.
[11] A. Crespo and E. A. Bier, “Webwriter: A browser-based editor for con-

structing web applications,” Int’l J. Computer and Telecommunications
Networking, vol. 28, no. 7, pp. 1291–1306, 1996.

[12] J. Liu, C. K. Wong, and K. K. Hui, “An adaptive user interface based
on personalized learning,” IEEE Intelligent Systems, vol. 18, no. 2, pp.
52–57, 2005.

[13] D. Khushraj and O. Lassila, “Ontological approach to generating per-
sonalized user interfaces for web services,” in Proc. Int’l Conf. The
Semantic Web, vol. 3729, 2005, pp. 916–927.

[14] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, “Automatically generating
personalized user interfaces with supple,” Artificial Interlligence, vol.
174, no. 12-13, pp. 910–950, 2010.

784

