
Integrating Service Oriented MSR Framework and Google Chart Tools
for Visualizing Software Evolution

Yasutaka Sakamoto, Shinsuke Matsumoto and Masahide Nakamura
Graduate School of System Informatics, Kobe University

1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
Email: gen@ws.cs.kobe-u.ac.jp, {shinsuke, masa-n}@cs.kobe-u.ac.jp,

Abstract—We have previously proposed a service oriented
framework, named SO-MSR, which applied SOA (service
oriented architecture) for conducting the MSR (mining soft-
ware repository). The principal concept of SO-MSR is to
hide complex and complicated mining procedures to end-users
for practical use of MSR. Following the SO-MSR, we have
also developed MetricsWebAPI which is a web service for
metrics measurement. The purpose of this paper is to evaluate
the benefits and limitations of SO-MSR and MetricsWebAPI
through a development of client system of MetricsWebAPI. To
achieve the goal, we develop a consumer mashup application,
named MetricsViewer, which integrates MetricsWebAPI and
Google Chart Tools. This system is a Ajax web application
for visualizing software evolution from a revision control
system repository. Through the development experiment, we
have confirmed that the SO-MSR enables us easy and rapid
implementation of client system, easily integrating with other
web services and light-weight execution system.

Keywords-service oriented architecture; mining software
repository; visualization; web application; SO-MSR; Metric-
sWebAPI; MetricsViewer;

I. INTRODUCTION

In the typical software development environment, various
version control systems such as source control system and
bug tracking system are used to development management.
Therefore most of development histories can be recorded
in digital data. Currently, a number of researchers have
proposed some mining techniques from these software
repositories[1][2][3]. By applying these mining techniques,
we can obtain valuable knowledge for software development
based on empirical historical data.

We have proposed a framework, named SO-MSR[4],
which applied SOA (service oriented architecture) for con-
ducting the MSR (mining software repository). The principal
purpose of SO-MSR is to provide instant and easy way to
conduct MSR to general developers who have no specific
knowledge about MSR. Generally, conducting the MSR
requires non-trivial efforts for data extraction[5], prepro-
cessing for the data and applying mining technique. The
SO-MSR introduces an entire process of MSR techniqu
as an abstracted cloud service. Mining specific know-how
such as complex mining procedure, detailed parameters and
accessing protocol for repositories are wrapped in the mining

services. MSR practitioner can easily get mining results by
invoking service APIs without MSR specific know-how.

Following the SO-MSR, we have also developed a web
service with a focus on source code measurement which
is one of the major topic in MSR. The developed service,
named MetricsWebAPI, is a prototype system for measuring
source code metrics. MetricsWebAPI wraps and abstracts
accessing method of SCS (source control system) reposi-
tories and measuring techniques of source codes. User can
measure a variety of source code metrics without regard to
the difference of SCS repositories and the difference of pro-
gramming languages. MetricsWebAPI can be accessed over
a network using XML-based machine-to-machine protocols
such as REST and SOAP.

However since the MetricsWebAPI is just a metrics
calculation web service, MetricsWebAPI does not assume
end-user’s usage and does not support visualization and
interpretation of measurement results. The next challenge of
SO-MSR and MetricsWebAPI is to develop a client system
which wraps MetricsWebAPI.

The purpose of this paper is to evaluate the benefits
of SO-MSR and MetricsWebAPI through a development
of client system of MetricsWebAPI. To achieve the goal,
we develop a consumer mashup application MetricsViewer
which integrates MetricsWebAPI and Google Chart Tools.
MetricsViewer visualizes the software evolution from SCS
repositories interactively and intuitively. The advantage of
MetricsViewer over other existing visualization systems is
that there is no special system requirement. MetricsViewer
requires just a network connection and an internet browser.

The organization of this paper is as follows. Section II
describes preliminaries Section III presents our proposed
MetricsViewer.We discuss the advantages and limitations in
Section IV and we conclude in Section V.

II. PRELIMINARIES

A. Challenges in Practical Use of MSR

One of the challenges in practical use of MSR is lack
of system or framework to sharing mining techniques and
knowledge. Therefore, we need some efforts and technical
knowledge for applying MSR.

2012 Fourth International Workshop on Empirical Software Engineering in Practice

978-0-7695-4866-1/12 $26.00 © 2012 IEEE

DOI 10.1109/IWESEP.2012.16

35

CVS

Statistical
Analysis
Service

SCS Service

Metrics
Service

Web-based
mining service

front-end

checkout()

log()

update()

getSloc()

getCycComplexity()

Subversion

getAddedLines()

getAverage()

getCorrelation()

t.test()

Mining service inventory

use

other mining
services

use

..

read

Sequence of mining services

Combination of mining services

register reference

use

repository

service

service APIdirectly use services
with SOAP/REST protocol

BTS Service

getBugList()

Bugzilla Redmine

read

getBugPriority()

getBugFixedDate()

SCS (Source Control System)
repositories

BTS (Bug Tracking System)
repositories

…

Figure 1. Architecture of SO-MSR

Basically MSR requires following steps; accessing soft-
ware repositories, quantification (or measurement) of repos-
itory data, processing the quantified results. Though wide
variety of mining tools has been published on the web,
learning effort for each tool and is required for MSR
practitioners.

B. SO-MSR

Service Oriented Framework for MSR (SO-MSR) is a
framework to support practical use of MSR. The most impor-
tant concept of SO-MSR is to hide complex and complicated
mining procedures for end-users. Following the SO-MSR,
mining techniques are wrapped as abstracted services. Each
service provides meaningful APIs and abstracts repository
access protocol, detailed mining techniques and detailed
mining parameters. End-users can easily get mining results
without specific MSR knowledge.

Figure 1 shows the architecture of SO-MSR. A cylinder
means a software repository, gray-colored box means a
mining service and white-colored box means a service API.

Accessing methods of both CVS and Subversion reposi-
tories are wrapped in source control system (SCS) service.
The SCS service has common SCS APIs such as checkout(),
update() and log(). Likewise, bug metrics can be obtained
from BTS service APIs without regard to whether the bug
is stored in Bugzilla or Redmine. Mining services use
these basic repository services. This figure illustrates two
example mining services; Metrics Service and Statistical
Analysis Service. A user can use the services through a Web

application front-end and can directly call the services using
SOAP/REST protocol. Service inventory, located in the
right-upper, supports sharing a sequence and combination
of service invocations. Referring the registered service invo-
cations enables independent validation, mining replication
and customizing the mining procedure.

C. MetricsWebAPI

MetricsWebAPI is a Web service for source code metrics
measurement which corresponds to “Metrics Service” in
Figure 1. Currently, MetricsWebAPI has 32 service APIs,
and can calculate 14 types of stati code metrics (i.e., sloc,
cyclomatic complexity and C&K metrics) and 12 types of
change metrics (i.e., number of code churns, number of
developers and number of revisions) directly from two types
of SCS repositories (CVS and Subversion).

An example of usage flow of calculation of cyclomatic
complexity using MetricsWebAPI is shown as follows. This
example uses two APIs with using cURL1 command with
REST protocol.

$curl http://metrics.web.api/registerReposi
tory?repository=http://path.to.repository/
<id>1</id>

$curl http://metrics.web.api/getCyclomaticC
omplexity?id=1&code=/src/main.java
<wmc>14</wmc>

1cURL is a command-line tool to transfer data to or from a server with
URL syntax using various protocols.

36

The first command invokes “regsiterRepository” API with
specifying a repository path (i.e., http://path.to.repository/).
Its return value means that the registered repository ID is 1.
The second command invokes “getCyclomaticComplexity”
API with specifying the repository ID and path to target
source code (i.e., /src/main.java). Its return value shows that
the cyclomatic complexity of target source code is 14.

D. Metrics Visualization for Project Management

Visualization of software repository is a general and
popular approach to understand evolutions and histories of a
software development to managing the development project.
The visualization is intuitively appealing and easily provides
“birds-eye view” from a huge software development data.
Wide variety of visualization tools and systems have been
proposed by a number of researchers [6][7][8][9].

In this paper, we develop “MetricsViewer” which is a
web application for visualizing source code evolution. Note
that as described in Section I, the goal of this paper is not
to propose a novel and useful visualization system but to
evaluate the benefits of applying SOA to MSR through the
development of the visualization system.

III. METRICSVIEWER

A. Overview

MetricsViewer is a web application for visualizing soft-
ware evolution. The MetricsViewer integrates MetricsWe-
bAPI for metrics calculation and Google Chart Tools2 for
metrics visualization. The advantage of MetricsViewer over
other existing visualization systems is that there is no special
system requirement. MetricsViewer requires just a network
connection and an internet browser.

These development style which aggregates and inte-
grates some existing web service APIs is called “consumer
mashup”[10]. The benefits of consumer mashup are follows;
it does not require extensive programming skills, and saving
time for implementing application features.

B. Architecture

The architecture and process flow of MetricsViewer is
shown in Figure 2. MetricsViewer is composed of only html
and JavaScript.

The visualization process flow is shown as follows.

Step1: A user registers his/her repository through Met-
ricsViewer’s html page.

Step2: JavaScript component invokes repository register-
ing API.

Step3: MetricsWebAPI synchronizes the specified SCS
repository.

Step4: JavaScript component invokes metrics measure-
ment APIs.

2https://developers.google.com/chart/

Metrics
WebAPI

Metrics
Viewer

1. register

service

JavaScript

html

2. register repository

SCS
repository

4. call metric calculation APIs

5. get metrics �����

����	�
�������	�

�
�	����
�	�

�	���
�
��	���
�

������

�����

����	�
�������	�

�
�	����
�	�

�	���
�
��	���
�

������

6. call graph generation APIs

7. get graph objects

8. generate

3. sync

Google
Chart Tools

9. view

repositorysystem
component

service
response

Figure 2. Architecture and process flow of MetricsViewer

Step5: MetricsWebAPI returns calculated metrics.
Step6: JavaScript component invokes graph generation

APIs provided by Google Chart Tools.
Step7: Chart Tools returns graph objects.
Step8: JavaScript component generates visualization html

page.

C. Features

MetricsViewer has four principal views. A screenshot of
MetricsViewer is shown in Figure 3.

Package Explorer
A user selects his/her target source code or target directory

stored in a specified SCS repository. This explorer uses
lsr() API which lists files and directories in the specified
repository. In this case, a user specifies “MashMap” project
in his/her repository and specifies “Main.java” as a target
source code. The following three views are interactively
changed by this selection.

Metrics Summary View
This view summarizes some metrics calculated

from specified source code or directory. Used
APIs are getLastUpdated(), getSloc(),
getNumberOfContributors() and so on. In this
screenshot, the summarized metrics are calculated from the
newest version (revision 28) of main.java.

History View
This view is for visualizing a history of changes of a

source code metric for each revision. The y-axis means
revision and the x-axis means metric value. The visualized
metric can be selected in Metrics Summary View.

Developer View
This view shows activities of developers in target source

code or target directory. This screenshot shows that three

37

Metrics
Summary View

History View

Developer View Package
Explorer

Figure 3. A screenshot of MetricsViewer

main developers and other developers are contributed to the
source code.

D. Implementation

We have implemented the MetricsViewer as an Ajax
application using HTML5, CSS3 and jQuery 1.7. Met-
ricsViewer can work on Google Chrome and Firefox. A
cross domain request of XMLHttpRequest used in the Ajax
request is prevented by “same-origin policy” for ensuring
browser security. To avoid the same-origin policy, we have
introduced CORS (Cross-Origin Resource Sharing) filter to
our MetricsWebAPI server. The total lines of code of a
JavaScript file was 410, and the development effort was
about 1 man-months.

Basically, the MetricsViewer invokes the MetricsWebAPI,
parses the XML-formatted results, invokes the Google Chart
Tools APIs, and visualizes obtained graph object to a html
page.

IV. DISCUSSION

In this section, we discuss advantages and limitations
of SO-MSR and MetricsWebAPI through the development
experience of MetricsViewer.

Client developer does not required specific knowledge
for conducting MSR such as calculation algorithm of each
metric. Also the graph generation logics are delegated to
the Google Chart Tools. The developer can implement their
client application without focus on data processing logics
with focus on its interface or application design.

Currently a number of web services are published on the
web. MetricsWebAPI also can be used as same as other ex-
isting web services. So, MetricsViewer can easily collaborate
with other web services and can easily be extended toward
more value-added MSR service. In other words, SO-MSR
provides benefit in reusability.

Client-side execution environment does not required high
computing power and large disk storage. Every mining
processes and graph generation processes are executed on
a deployed server. MetricsViewer can be used from a low-
spec environment such as a mobile device.

However, there are some limitations in SO-MSR and
MetricsViewer. First, invoking some web services requires
significant network overhead because service request mes-
sages and response messages are transferred using XML-
based http protocol. This overhead may cause low usability
for interactive visualization.

MetricsWebAPI has also a problem in its mining per-
formance. Processing procedures of MetricsWebAPI are (1)
accessing a specified repository, (2) applying pre-processing
to a specified source code, and (3) measuring a metric. The
first step requires network access to the repository, and the
second step and the third step need some calculation effort.
Additionally, if same request comes again MetricsWebAPI
executes same mining procedure because MetricsWebAPI
has no caching system,. We need to improve the efficiency
of mining process. In our future work, we have a plan
to implementation of a caching system using distributed
database system.

Mining practitioner can not control detailed mining pro-
cedure and parameters because of the abstraction of mining
process. For example, cohesion metric LCOM (lack of cohe-
sion of a method) has some varieties[11]. Furthermore Linke
et al. have pointed out that measured metric value varies
depending on each mining tool[12]. These differences are
wrapped and hidden into MetricsWebAPI. Low flexibility
and opaqueness of internal process are one of the limitations
of SOA.

V. CONCLUSION

To evaluate the advantages and limitation of SO-MSR
and MetricsWebAPI, we have developed a consumer mashup
application MetricsViewer which integrates MetricsWebAPI

38

and Google Chart Tools for visualizing software evolution
from a source control system repository.

In our future work, we will continue to develop the Met-
ricsViewer toward personalized metrics visualization system.
It will support software developers to instant looking back
on their own development activities. Comparative empirical
evaluation with other existing MSR techniques must be
conducted. Additionally, overcoming the problems of SO-
MSR and MetricsWebAPI revealed in this study is also the
important future work.

ACKNOWLEDGMENT

This research was partially supported by the Japan Min-
istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (C) (No.24500079), Scientific
Research (B) (No.23300009)], and Kansai Research Foun-
dation for technology promotion.

REFERENCES

[1] A. E. Hassan, “The road ahead for mining software reposito-
ries,” in Frontiers of Software Maintenance, 2008, pp. 48–57.

[2] A. Hindle, “Green mining: A methodology of relating soft-
ware change to power consumption,” in Mining Software
Repository, 2012, pp. 78–87.

[3] O. Baysal, R. Holmes, and M. W. Godfrey, “Mining usage
data and development artifacts,” in Mining Software Reposi-
tory, 2012, pp. 98–107.

[4] S. Matsumoto and M. Nakamura, “Service oriented frame-
work for mining software repository,” in The Joint Conference
of the 21st International Workshop on Software Measurement
(IWSM) and the 6th International Conference on Software
Process and Product Measurement (Mensura), 2011, pp. 13–
19.

[5] S. Kim, T. Zimmermann, M. Kim, A. Hassan, A. Mockus,
T. Girba, M. Pinzger, E. J. Whitehead, Jr., and A. Zeller, “Ta-
re: An exchange language for mining software repositories,”
in Mining Software Repository, 2006, pp. 22–25.

[6] J. Froehlich and P. Dourish, “Unifying artifacts and activities
in a visual tool for distributed software development teams,”
in ICSE ’04: Proceedings of the 26th International Confer-
ence on Software Engineering, 2004, pp. 387–396.

[7] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler,
“A system for graph-based visualization of the evolution of
software,” in SoftVis ’03: Proceedings of the 2003 ACM
Symposium on Software Visualization, 2003, pp. 77–86.

[8] M. Pinzger, H. Gall, M. Fischer, and M. Lanza, “Visualizing
multiple evolution metrics,” in SoftVis ’05: Proceedings of the
2005 ACM Symposium on Software Visualization, 2005, pp.
67–75.

[9] L. Voinea, A. Telea, and J. J. van Wijk, “Cvsscan: Visual-
ization of code evolution,” in Proceedings of the 2005 ACM
Symposium on Software Visualization, 2005, pp. 47–56.

[10] S. Mohan, E. Choi, and D. Min, “Conceptual modeling of en-
terprise application system using social networking and web
2.0 “social CRM system”,” in Proc. Int’l Conf. Convergence
and Hybrid Information Technology, 2008, pp. 237–244.

[11] L. H. Etzkorn, S. E. Gholston, J. L. Fortune, C. E. Stein,
D. Utley, P. A. Farrington, and G. W. Cox, “A comparison
of cohesion metrics for object-oriented systems,” Information
and Software Technology, vol. 46, no. 10, pp. 677–687, 2004.

[12] R. Lincke, J. Lundberg, and W. Lowe, “Comparison software
metrics tools,” in Proc. Int’l Symposium on Software Testing
and Analysis, 2008, pp. 131–141.

39

