
54 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Data Flow Diagrams, Dependency Analysis, Legacy Migration, Procedural Program, Service
Extraction, Service Oriented Architecture, Source Code

INTRODUCTION

Due to rapid changes in business environment,
enterprise software systems are required to be
more agile and flexible to keep up with the
changes. However, most enterprise systems
have been built upon a highly proprietary and

Identifying Services in
Procedural Programs for

Migrating Legacy System to
Service Oriented Architecture

Masahide Nakamur, Kobe University, Japan

Hiroshi Igaki, Tokyo University of Technology, Japan

Takahiro Kimura, Nihon Unisys Ltd., Japan

Ken’ichi Matsumoto, NAIST, Japan

ABSTRACT
In order to support legacy migration to the service-oriented architecture (SOA), this paper presents a pragmatic
method that derives candidates of services from procedural programs. In the SOA, every service is supposed
to be a process (procedure) with (1) open interface, (2) self-containedness, and (3) coarse granularity for
business. Such services are identified from the source code and its data flow diagram (DFD), by analyzing
data and control dependencies among processes. Specifically, first the DFD must be obtained with reverse-
engineering techniques. For each layer of the DFD, every data flow is classified into three categories. Using
the data category and control among procedures, four types of dependency are categorized. Finally, six rules
are applied that aggregate mutually dependent processes and extract them as a service. A case study with a
liquor shop inventory control system extracts service candidates with various granularities.

monolithic architecture, without considering
interoperability among other systems. Such
monolithic systems are usually fragile for the
changes. A simple update of a business process
may result in huge cost for updating the system.

The service-oriented architecture (SOA)
(Erl, 2007; Newcomer & Lomow, 2004;
Papazoglow & Georgakopoulos, 2003) is an
architecture paradigm to cope with the problem.

DOI: 10.4018/jisss.2011100104

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 55

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In the SOA, features of a system are exhibited
as self-contained services, corresponding to
elementary business units. A service has open
interface that encapsulates implementation-
specific logic and data. A business process can
be rapidly created or modified by assembling
the existing services, where the services are
loosely coupled. Thus, the SOA is believed to
make the system robust for the business changes.

To receive the benefit of the SOA within
the existing assets, the legacy migration to
SOA is now a great concern (Cetin, Altintas,
Oguztuzun, Dogru, Tufekci, & Suloglu, 2007;
Lewis, Morris, Smith, & Simanta, 2008). Most
of the conventional SOA development frame-
works e.g., SOMA (Arsanjani, Ghosh, Allam,
Abdollah, Gariapathy, & Holley, 2008), SOMF
(Bell, 2008), and BMM (Berkem, 2008) adopt
a top-down approach, which starts with the
business process analysis, identifies elementary
processes, and implements them as services.
Since the system is designed optimally for the
SOA, the top-down approach is well applied to
development of brand-new systems. However,
it does not consider much how to reuse the
existing legacy system.

To support the SOA legacy migration ef-
fectively, this paper presents a pragmatic method
that extracts candidates of SOA services from
procedural programs. In the proposed method,
we extensively analyze dependencies among
processes (i.e., procedures) in the source code.
Each service is derived as an aggregation of
mutually-dependent processes, so that the
service has open-interface, self-containedness
and coarse granularity for the business.

For implementing the method, we first
obtain the Data Flow Diagram (DFD) (De-
Marco, 1979) by applying reverse-engineering
techniques to the given source code (O’Hare
& Troan, 1994; Benedusi, Cimitile, & Car-
lini, 1989). We then classify every data flow
in the DFD into three categories (external,
system and module). Using the data category,
we identify four types of dependency (system
data, module data, transaction and condition)
between processes. Finally, we aggregate
mutually-dependent processes as self-contained

services, which is systematically performed by
the proposed six rules.

To evaluate the proposed method, we have
conducted two kinds of experiments with a
liquor shop inventory control system. The ex-
perimental results show that reasonable service
candidates with various granularities are suc-
cessfully extracted from the source code. We
also investigate the derived services through the
comparison with the classical software metrics:
cohesion and coupling metrics (Al-Ghamdi,
Shafique, Al-Nasser, & Al-Zubaidi, 2001;
Lakhotia, 1993; Yourdon & Constantine, 1979).

The paper is organized as follows. In the
next section, we briefly survey the service
oriented architecture and the problem to be
tackled. We then present the proposed service
extraction method. We conduct the experiment
with the inventory control. Next, we evaluate
the proposed method with several related work
and finally, we conclude the paper.

PRELIMINARIES

Service-Oriented
Architecture (SOA)

The service-oriented architecture (SOA) is a
software architecture that regards software
functionalities as services (which we call SOA
services), and builds a system by integrating and
orchestrating the multiple services. Although
there are various definitions, in this paper we
define an SOA service as a set of processes
(procedures) satisfying the following three
conditions S1, S2, and S3.

(Condition	S1)	Open	Interface: A service has
an open interface, by which external entities
can access to the service independently of
the implementation of the service. For the
access, a service cannot require platform
specific operations, or implementation-
specific data that are only used within the
system.

(Condition	 S2)	 Self-Contained: A service
can be executed by itself without any

56 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

other services. Thus, a process cannot be
a service if the process requires execution
and/or data of any other processes. Such
mutually-dependent processes should be
aggregated within the same service.

(Condition	 S3)	 Coarse-Grained: A service
is a coarse-grained process that can be a
business construct by itself. Also, multiple
services can be integrated to achieve a more
sophisticated and coarser-grained service.

The above conditions are necessary condi-
tions for SOA services, and contribute to the
loose coupling among services (Erl, 2007;
Newcomer et al., 2004). Thus, the services can
be easily composed and decomposed to imple-
ment various business workflows. As a result,
the SOA can make a system robust and flexible
for rapid changes of business environment.

SOA Legacy Migration

The SOA legacy migration refers to a re-
engineering activity that converts the legacy
system to an SOA-enabled system. In the
conventional SOA development frameworks
e.g., SOMA (Arsanjani et al., 2008), SOMF
(Bell, 2008), and BMM (Berkem, 2008), the
services are usually identified at the business
modeling and analysis phases. Every business
process is modeled and refined into elementary
processes that cannot be decomposed further.
Each elementary process corresponds to an
atomic service, associated with a software mod-
ule implemented by fine-grained components
or libraries. Although the services are optimally
determined in a top-down manner, there is no
guarantee that the legacy system implements
modules that exactly correspond to the services.
Adapting and refactoring the legacy system to
the optimal services usually requires huge cost.

It is thus reasonable in the SOA legacy
migration to adopt a bottom-up approach,
which starts with the system analysis so that
the current implementation is reused as much as
possible. To tackle this, there have been several
relevant studies (Cetin et al., 2007; Lewis et al.,
2008; Matos & Heckel, 2009; Sneed, 2006). As

mentioned in these studies, a major challenge
lies in how to identify services in the legacy
system. We will review these studies later on.

The Service Extraction Problem

To support the SOA legacy migration effectively,
we tackle the following problem in this paper.

[Input:] Source code C of a legacy system. We
assume that C is written in a procedural
program language.

[Output:] A set of services S = {s1, s2, ..., sn},
where every si is an aggregation of pro-
cesses (procedures) within C that satisfies
Conditions S1, S2 and S3.

Liquor Shop Inventory
Control System

To help understanding, we introduce a liquor
shop inventory control system, as an illustrative
example of a legacy system. The system is an
implementation of the Liquor Shop Problem
(Sakaya-Mondai), which is a common problem
in the software engineering education in Japan
(Yamazaki, 1984). The following actors appear
in the problem.

[Customer] orders products to the liquor shop.
[Stock	Manager] manages the inventory of

the liquor shop, and executes business
processes like “Ship Products”, “Receive
Products”, “Resolve Out of Stock”.

[Freighter] ships products to the customer, and
also delivers products to the warehouse.

[Warehouseman] handles input/output of the
warehouse based on the instruction from
the stock manager.

In the business processes, various docu-
ments, such as “Order Form”, “Container (BIN)
Manifest”, “Shipping Instruction” and “Out of
Stock Notice”, are exchanged among the actors.

Figure 1 shows an implementation of the
“Resolve Out of Stock” process, written in the
C language.

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 57

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The business process is explained as fol-
lows:

[Trigger	Condition] The process is triggered
when new stock arrives. This implemen-
tation takes an Out-Of-Stock Notice (say,
current) as input. Each Out-of-Stock Notice
(OoSN) describes an order (liquor brand
and quantity) that had not been processed
due to out of stock.

[Resolution	Policy] The given OoSN (current)
can be resolved only if [(a) there exist no
other pending OoSN issued before current
and requesting the same brand as current
does], and [(b) there exists sufficient stock
in the inventory].

[Shipping	 Instruction] When current is
resolved, the requested quantity of the
product is reserved from the inventory.

Then, a Shipping Instruction (SI) is issued.
Every SI describes a list of pairs [Bin No.
and Qty], telling how many bottles should
be picked from which bins.

[Delete	of	OoSN] The resolved OoSN is deleted
from the database after the shipping.

PROPOSED METHOD

Introducing DFD

To achieve the service extraction from source
code, we extensively use the Data Flow Dia-
gram (DFD) (DeMarco, 1979). The DFD is a
diagram visualizing processes in a system as
well as data flows among processes. It has been
well accepted in the structured analysis of a
system. In a DFD, an oval represents a process
(we may also use the term process to represent a

Figure 1. Source code of ``Resolve Out of Stock’’ process

58 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

procedure or a task in the procedural program),
a solid arrow represents a data flow, a pair of
parallel lines represents a data store, and a box
represents an external entity. Figure 2 shows
an example of the DFD, corresponding to the
source code in Figure 1.

The reasons why we chose the DFD as a
tool are as follows. First, the DFD is well-
suited to legacy systems, since they are often
written in the procedural structured language.
Second, since the DFD visualizes processes
(not objects), it helps us to find services (=
processes), intuitively. Third, the DFD can
describe multiple layers to represent different
abstraction levels. So it allows us to investigate
services with various granularities.

Key Ideas for Service Extraction

As defined before, every SOA service is a
process in a system. However, every process
in a system is not necessarily an SOA service.
So we evaluate processes in the DFD according
to Conditions S1, S2 and S3.

[Condition	S1:	Analyzing	Open	Interface]
A process in a DFD corresponds to a pro-
cedure (or function) of source code. Data
flows to/from the process characterize
input/output interfaces of the procedure.
In order for a procedure to be a service

with an open interface, the input/output
data must be common enough for service
consumers to understand. We measure such
commonality as the degree of how widely
the data is known within the system. If data
is exhibited to external actors or shared by
many processes, we consider that the data
is common. On the other hand, if data is
exchanged only by a few limited processes,
we regard that the data is not common.

Our key idea is to evaluate the degree
of open interface as the commonality of the
input/output data of the process. To do this, we
classify every data flow in the DFD into three
categories: (1) external data -- data exchanged
with external actors, (2) system data -- data ac-
cessed commonly from various processes (e.g.,
database, global variables, etc.) (3) module data
-- data used by limited processes only (e.g.,
local variables, temporal data, etc.)

[Condition	 S2:	Analyzing	 Self-Contained-
ness] A service can be executed by itself
without depending on other services.
Therefore, two processes that have strong
dependency cannot be two separate
services, and they should be aggregated
within the same service. We analyze such
dependency among processes from the
viewpoints of data and control.

Figure 2. DFD of “Resolve Out of Stock” process

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 59

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The data dependency is caused by data
exchanged among the processes. Using the
data category marked in the DFD, we identify
two kinds of data dependency: (MD) module
data dependency and (SD) system data depen-
dency. We consider that processes exchanging
uncommon data have strong dependency, since
no other process can directly interpret the un-
common data.

The control dependency is caused by con-
trol flow among between processes. Using the
DFD and the source code, we identify two kinds:
(TR) transaction dependency and (CO) condi-
tion dependency. The transaction dependency is
strong dependency such that all processes must
be executed together in the same transaction.
The condition dependency is relatively weak
dependency, where a process specifies a condi-
tion for execution of other processes.

[Condition	S3:	Coarse-Granularity	for	Busi-
ness] Processes with different granularity
appear in different layers of the DFD.
Therefore, by investigating each level of
the hierarchical DFD, a user of the proposed
method can extract service candidates with
various granularities. Thus, the user can
choose appropriate granularity level for
the target system and business goal.

[Service	Extraction	Rules] Even if a process
does not satisfy Condition S1 or S2, the
process can become a service when com-
bined with other processes. We present six
rules for the service extraction, which sys-
tematically aggregate mutually-dependent
processes.

Outline of Service Extraction

The proposed method for the service extraction
problem consists of the following four steps.

STEP1: Obtain a hierarchical DFD from C.
STEP2: Categorize data flows in the DFD.
STEP3: Analyze dependency among processes.
STEP4: Apply the service extraction rules.

Obtaining a Hierarchical
DFD (STEP1)

We first obtain a hierarchical DFD from a given
C program. As defined in DeMarco (1979), a
hierarchical DFD consists of multiple layers,
each of which contains processes at a certain
level of abstraction, and data flows among the
processes. A process can be expanded to show
a more detailed DFD in a lower layer. Thus, we
can see processes with different granularity at
different layers of the DFD. That is, a higher
layer contains coarse-grained processes imple-
menting high-level functionalities, whereas a
lower layer includes fine-grained processes
performing more primitive functionalities.

In this paper, we do not discuss the techni-
cal details on how to implement STEP1. The
conventional reverse-engineering techniques
(O’Hare et al., 1994; Benedusi et al., 1989),
which derive the hierarchical DFD from pro-
cedural programs, can be used. In the reverse-
engineering, the layers are usually derived
based on a function call graph (or a structure
chart), and the granularity is determined how
each function is modularized in the original
source code.

The following steps are supposed to be per-
formed for every layer of the hierarchical DFD.

Categorizing Data Flows (STEP2)

STEP2 classifies data flows in the DFD into the
three categories mentioned in Key Ideas. For
the DFD shown in Figure 2, Figure 3 shows a
resultant DFD obtained in STEP2. We explain
each data category as follows.

[External	Data	 (E)] We define the external
data as data exchanged between a process
and an external actor. In the actual system,
files, standard input/output and printed
documents are typical instances. In Figure
3, “Shipping Instruction” is an external
data. In the DFD, we label “E” to represent
the external data flows.

[System	 Data	 (S)] The system data is data
commonly used by processes in the system.

60 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Typical instances are input/output for data-
base, global variables, shared data among
sub-systems. In the DFD, data store shared
by multiple processes can be system data.
We label “S” in the DFD to represent the
system data flows. In Figure 3, “Out of
Stock Notice” is shared by five processes,
so it can be system data. So are the data
for two DBs (“OoSN DB”, “Liquor Shop
Inventory DB”).

[Module	Data	(M)] The module data is specific
data used by a few limited processes. Typi-
cal instances are temporal variables and
local variables. In the DFD, a direct data
flow between two processes, or a data store
shared with limited processes only can be
classified as module data. We label “M” to
represent the module data flows. In Figure
3, “# of Bins” is obtained by process “(3)
Reserve Inventory”, and used for “(4) Print
SI Header” only. So we make it module
data. Similarly, “List of Picking Bins” is
module data since it is temporal data used
for “(5) Print SI Data” only.

We are currently assuming that STEP2
should be supported by human expertise of
system maintainers. Labeling “E” is quite easy
since the data is connected to external entity.
However, deciding “S” or “M” is sometimes

not obvious, since it needs to evaluate the
commonality of data. One criterion is to count
the number of processes related to the data.
However, the final decision should be made,
considering the semantics and the roles of the
data. These are not described in the source
code syntactically, but are in the knowledge
of the system maintainers. This topic will be
discussed later.

Analyzing Data/Control
Dependencies (STEP3)

Using the result of STEP2 and the source code,
STEP3 analyzes the dependency between
processes, with respect to the data dependency
(MD, SD) and the control dependency (TR,
CO). Here, we consider MD and TR to be
strong dependency, whereas SD and CO are
regarded as to be weak dependency. The strong
dependency takes precedence over the weak one
when multiple relations hold simultaneously.

For convenience, the data dependency is
shown in a dotted arrow (− − − →) in the DFD,
while the control dependency appears as an
alternate long and short dashed arrow (−⋅ − ⋅
− ⋅ →). In the following, let P1, P2 be arbitrary
processes, d be any data. Also, we write L(d)
(∈{M, S, E}) to represent the data category of
d (defined in STEP2).

Figure 3. DFD after data classification

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 61

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

[Module	Data	Dependency	(MD)] We say that
processes that exchange module data have
module data dependency. By definition, the
module data is so uncommon (specific) that
it cannot be produced or consumed easily by
external actors or other processes. Hence,
we consider that processes exchanging the
module data have strong interdependency,
and they are tightly coupled.

Now we write P1 − (d) → P2 to represent a
data flow d from P1 to P2 (including an indirect
flow via a data store). Then the module data
dependency from P1 to P2, denoted by MD(P1,
P2), is defined as follows:

MD(P1, P2) ⇔ ∃d: [(L(d) = M) ∧ (P1
− (d) → P2)]

As for the example in Figure 3, we can see
MD((3),(4)) and MD((3),(5)). In the DFD, the
data dependency is labeled by “MD”.

[System	Data	Dependency	(SD)] We say that
processes that share system data have sys-
tem data dependency. By definition, the
system data is common and opened to many
processes. Therefore, we consider that the
system data dependency is weaker than
the module data dependency. The system
data dependency from P1 to P2, denoted by
SD(P1, P2), is defined as follows:

SD(P1, P2) ⇔ ∃ d: [(L(d) = S) ∧
(¬MD(P1, P2)) ∧ (P1 − (d) → P2)]
In Figure 3, we can see SD((3),(2)) via

“Liquor Shop Inventory DB”, SD((6),(7)) via
“OoSN DB”, and so on. In the DFD, the system
data dependency is labeled by “SD”.

Figure 4 shows the DFD showing the data
dependency on the DFD in Figure 3.

[Transaction	Dependency	(TR)] We say that
processes that must be executed in the same
transaction have transaction dependency.
The transaction is a process control where
multiple processes are executed at once in
a consistent manner. We write TR(P1, P2)

to represent the transaction dependency
between P1 and P2. Typical cases of TR(P1,
P2) include (a) P1 must be executed before
P2, or (b) executing both P1 and P2 com-
pletes a task (i.e., omitting one of them
produces an incomplete result). In the
source code, we often identify such trans-
action dependency within processes in the
same code block.

Let us take the source code in Figure 1
and the DFD in Figure 3. For instance, we can
identify TR((4),(5)), since a complete ship-
ping instruction requires both header and data
body. Any pair of processes (3), (4), (5), (6)
has transaction dependency, since all of them
should be performed in the same transaction as
specified in the same code block. The transaction
dependency is labeled by “TR” in the DFD.

[Condition	Dependency	(CO)] If execution
of P2 depends on a condition evaluated
by P1 (i.e., P1 works as a control flag of
P2), we say that P1 and P2 have condition
dependency. Let IF(P1, P2) be a predicate
that P1 is a control flag of P2. Then the
control dependency, denoted by CO(P1,
P2), is defined as follows, taking the prior-
ity against TR.

CO(P1, P2) ⇔ ¬TR(P1, P2) ∧ IF(P1, P2)
In a situation where CO(P1, P2), P1 just

describes a context under which P2 is executed.
By altering P1, P2 may be executed by other con-
texts. We thus consider the control dependency
is weaker than the transaction dependency. In
the DFD, the control dependency is labeled
by “CO”.

As for the example of Figure 1 and Figure
3, processes (1) and (2) respectively specify the
context of execution of (3), (4), (5) and (6). So
we identify the control dependency.

Figure 5 shows the DFD showing the
control dependency on the DFD in Figure 3.
To avoid the schematic complexity, we make
a group of (3)-(6) with the transaction depen-

62 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

dency, and draw an arrow with CO from (1) (or
(2)) to the group. This is to abbreviate arrows
from (1) (or (2)) to any in the group.

Extracting Services (STEP4)

Using the dependency obtained in STEP3, this
step aggregates mutually-dependent processes,
and extracts them as self-contained services
with open-interface.

Suppose that certain dependency is iden-
tified between P1 and P2 in STEP3. If P1 and
P2 are aggregated within the same service, we
call the aggregation an integrated process,
and represent it by P1 +[P2. If P1 and P2 can
be separated services, we call them separated
processes, and represent them by P1 | P2. Here
we present six rules of the service extraction
that systematically integrate or separate the
processes.

[(Rule1)	Integrate	Processes	with	MD] Pro-
cesses P1 and P2 such that MD(P1, P2) should
be aggregated within the same service. If
they are separated services, the service
consumer has to bridge the module data
between P1 and P2, by executing P1 and
P2 in order. This is against Condition S2.
Also, the module data is uncommon data,
which is against Condition S1. Thus, for
P1 and P2 such that MD(P1, P2), we make

P1 +[P2. In Figure 4, this rule aggregates
(3)+[(4) and (3)+[(5).

[(Rule2)	Separate	Processes	with	SD] Pro-
cesses P1 and P2 such that SD(P1, P2) can
be separated as different services. The
system data is common enough for many
processes. If the data store between P1 and
P2 stores the system data appropriately, we
consider that either P1 or P2 can be executed
asynchronously. For this, the input/output
data is reasonably common for the service
consumer (calling processes). Thus, we
consider that both P1 and P2 satisfy Condi-
tions S1 and S2. Thus, for P1 and P2 such
that SD(P1, P2), we can make P1 | P2. Note
that the separation is not mandatory. We
can integrate P1 +[P2 if necessary. If TR(P1,
P2) holds simultaneously, the following
Rule 3 should be applied first. In Figure
4, this rule makes separated processes like
(6)|(1), (3)|(2), etc.

[(Rule3)	Integrate	Processes	with	TR] Pro-
cesses P1 and P2 such that TR(P1, P2) should
be aggregated within the same service.
Since P2 presupposes P1, P2 cannot be ex-
ecuted by itself. If P1 and P2 are separated
services, the service consumer must con-
sider the execution order and transaction of
the two services, which violates Condition
S2. Thus, for P1 and P2 such that TR(P1,
P2), we make P1 +[P2. In Figure 5, this rule

Figure 4. DFD after data dependency analysis

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 63

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

aggregates (3)+[(4), (3)+[(5), (3)+[(6),
(4)+[(5), (4)+[(6), (5)+[(6).

[(Rule4)	Separate	Processes	with	CO] Pro-
cesses P1 and P2 such that CO(P1, P2) can
be separated as different services. P1 just
specifies the context of P2. So we consider
it reasonable to execute P2 under another
context, by altering P1 with another pro-
cess. Of course in this case, P2 must be
implemented without having module data
dependency with P1. Thus, for P1 and P2
such that CO(P1, P2), we can make P1 | P2.
Note that the separation is not mandatory.
If MD(P1, P2) holds simultaneously, Rule 1
is applied first. Figure 5, this rule separates
(1)|(3), (2)|(3), etc.

[(Rule5)	Integrate	Merged	Processes] Sup-
pose that we have two integrated processes:
P1 +[P3 and P2 +[P3. Then, executing P3
requires both P1 and P2. Therefore, we
need to integrate P1, P2 and P3 into P1 +[
P2 +[P3. This rule applies to processes with
MD or TR. In Figure 5, this rule makes
(4)+[(5)+[(6) from (4)+[(6) (obtained by
Rule3), and (5)+[(6) (obtained by Rule
3), etc.

[(Rule6)	Integrate	Transitive	Processes] Sup-
pose that we have two integrated processes:
P1 +[P2 and P2 +[P3. Then, executing P3
requires P2, and also executing P2 requires
P1. Therefore, we need to integrate P1, P2

and P3 into P1 +[P2 +[P3. This rule applies
to processes with MD or TR. In Figure 4 and
Figure 5, this rule makes (3)+[(4)+[(5)+[(6)
from (3)+[(4) (obtained by Rule 1) and
(4)+[(5)+[(6) (obtained by Rule 5).

Figure 6 shows services extracted from the
“Resolve Out of Stock” process.

In this example, the following four service
candidates were derived:

1. Check	Pending	OoSN	Service: For a given
x of Out of Stock Notice (OoSN), check if
there is any other pending OoSN requesting
the same product as x’s but issued earlier
than x.

2. Check	 Inventory	 Service: For a given
x of OoSN, check the availability of the
product requested by x within the current
inventory.

3. Ship	Replenished	Product	Service: Ship
the requested product as the product is
supposed to be replenished. The service
reserves the inventory, creates a shipping
instruction, and updates the OoSN database
as the transaction is done.

4. OoSN	Garbage	Collection	Service: Delete
the “resolved” OoSN from the data base.

It can be seen that (1) each of the four
services can be executed by itself (i.e., self-

Figure 5. DFD after control dependency analysis

64 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

contained), and that (2) the service has interfaces
with commonality of the system data.

EXPERIMENT

To demonstrate the effectiveness of the proposed
method, this section conducts two kinds of
experiments of the service extraction.

Experiment 1: Service Extraction
from Different Implementation

The first experiment is to extract services within
the “Resolve Out of Stock” process from another
implementation. The aim of the experiment is
to see how the proposed method is adapted to
various design choices for the same requirement.

Figure 7 shows another implementation of
the “Resolve Out of Stock” process. The source
code has been written by a different programmer
based on the same specification. Although the
workflow seems to be similar to the previous
program (Figure 1), the following points are
different in details.

Point	1: The process is performed for a given
cargo manifest (not an OoSN). This is
because the replenishment of the out-of-
stock product is possible only when a
cargo arrives.

Point	2: For every cargo manifest, all of the
OoSNs are scanned to be resolved.

Point	3: The shipping is performed when the
cargo manifest contains the requested
product.

Point	4: Both “checking inventory” and “check-
ing the pending OoSNs” are performed
within a single function is_replenished().

Figure 8 (a), (b), (c) show the resulting
DFDs obtained after STEP 2, 3, 4, respectively.

From this implementation, the following
four services have been identified:

1. Check	Cargo	Manifest	Service: For given
cm of a cargo manifest and x of an Out of
Stock Notice (OoSN), check if cm contains
products requested by x.

2. Check	 Replenishment	 Service: For a
given x of OoSN, check if the product
requested by x can be replenished. Specifi-
cally, check if there exists no other pending
OoSN requesting the same product as x’s
but issued earlier than x. Also, check the
availability of the product within the cur-
rent inventory.

3. Ship	Replenished	Product	Service: Ship
the requested product as the product is sup-
posed to be replenished. The service reserves

Figure 6. Service candidates within ``Resolve Out of Stock’’ process

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 65

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the inventory, creates a shipping instruction,
and updates the inventory database.

4. Update	Resolved	OoSN	Service: Delete
the “resolved” OoSN from the data base.

Now we compare the services with the ones
in the previous example (Figure 6). First, (A’)
Check Cargo Manifest Service is a completely
new service which does not exist in the previous
example. Second, (B’) Check Replenishment
Service is a coarse service that involves func-
tionalities of both (A) Check Pending OoSN
Service and (B) Check Inventory Service.
Next, (C’) Ship Replenished Product Service
is almost the same as (C) Ship Replenished
Product Service. Finally, (D’) Update Resolved
OoSN Service is the same as (D) OoSN Garbage
Collection Service.

In this experiment, it can be seen that
similar but slightly different services have been
identified from different implementations, even
though the implementations realize the same
business process. Each of the obtained services
reflects well the design choice considered in the
implementation. Thus, the proposed method
derives the AS-IS services, making full re-use
of the existing legacy code.

The result of service extraction can be used
to evaluate the current implementation with
respect to the degree of ease of legacy migra-
tion. If no reasonable service is extracted from
the source code, it means that major revision
for untangling tightly-coupled modules will be
required, resulting in a huge migration effort.

Experiment 2: Extracting
Multi-Grained Services

The second experiment is to identify services with
various granularities. In fact, the DFD allows the
hierarchical representation to capture processes
in different levels of abstractions (DeMarco,
1979). Therefore, by applying the proposed
method to each layer of the hierarchical DFD,
it is possible to extract multi-grained services.

For the experiment, we use an implemen-
tation of the liquor shop inventory control
system. This implementation is written in the C

language, comprising about 800 lines of code.
By reverse-engineering the source code, we
obtained a hierarchical DFD. Then, we applied
the proposed method to the top 3 layers (Layer
0 (= Context Diagram), Layer 1 and Layer 2)
of the DFD.

Figure 9 shows the services extracted
from the DFD Layer 1, describing sub-systems
of the whole Liquor Shop System. From this
layer, we derived five services. Although there
are dependency SD((2),(3)), SD ((1),(4)) and
SD ((1),(3)), these processes can be separated
according to Rule 2. Since we have no other
rules applicable, we extract (1)|(2)|(3)|(4)|(5)
as five services in this layer. The five services
are “Create OoSN DB Service”, “Receive
Service”, “Ship Service”, “Resolve Out of
Stock Service”, “Delete Empty Bins Service”,
all of which are well suited to our intuition of
business service. It can be seen from the result
that this implementation was well structured, in
accordance with the original business processes
of the Liquor Shop Problem.

Figure 10 shows all services extracted from
different layers of the DFD. In the table, the
column layer represents the layer of the DFD,
where 0 corresponds to the top level DFD (=
context diagram), 1 corresponds to the one in
Figure 9, and 2 corresponds to DFDs which
refine five processes in Figure 9 (e.g., the DFD
in Figure 2). As seen in the table, we can see
that all extracted services are reasonable and
consistent for the Liquor Shop Problem. Al-
though the granularity varies, we have con-
firmed that every service can be executed by
itself and take input/output as common as
system data.

EVALUATION

Characteristics of
Extracted Services

The proposed method derives services that en-
capsulate control flows of internal processes as
well as implementation-specific data. Accord-
ing to the service extraction rules, processes that
require a specific execution order or transaction

66 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 7. Another implementation of ``Resolve Out of Stock’’ process

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 67

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

are grouped within the same service. So service
consumers do not need to care for the control
flow among the processes. Also the module
data, which often depends on the implementa-
tion, is encapsulated and never appears in the
service interface.

The extracted service requires the system
data or external data for the input/output.
For this, the system data may not always be
exhibited directly in the service interface
of SOA (e.g., WSDL of Web service), since
the system data may be represented in an
implementation-specific form to increase the
performance of data sharing. For such a case,
we assume to apply a service wrapper (Sneed,
2006) that simply converts the system data into
an implementation-neutral form.

By the above discussion, every service
obtained by the proposed method has an open
interface with common data, which satisfies
Condition S1. Also, every service can be
executed by itself, without considering the
execution of other services or processes, which
satisfies Condition S2.

The proposed method can be applied to any
layer of the hierarchical DFD. If it is applied to
a higher layer, we can extract coarser-grained
services with high-level and sophisticated func-
tionalities. On the other hand, when it is applied
to a lower layer, we can expect finer-grained
services, which have low-level but re-usable

services. Thus, by choosing an appropriate layer
optimal for the target business and application,
the user can extract services with an appropriate
granularity, which can satisfy Condition S3.

Thus the extracted services satisfy Condi-
tions S1, S2 and S3, which can be reasonable
candidates for SOA services.

Limitations of Proposed Method

The proposed method tries to find service can-
didates by investigating structured processes
within the DFD. Therefore, services can be
extracted successfully from well-structured
source code, such as the ones used in our case
study. However, from seriously ill-structured
source code, there is no guarantee to be able
to obtain services with appropriate granularity.
Note also that our method cannot cover dynamic
dependencies which can be found only at run-
time, as our dependencies are specified statically
based on the source code. For such cases, some
refactoring process would be necessary before
the service extraction.

Another limitation is that the data classifi-
cation in STEP2 relies on the human expertise.
Especially distinction of module data and
system data would be difficult in some cases.
For instance, a programmer may implement
certain module data as a global variable just
for convenience. There is also a question that

Figure 8. Service extraction from another implementation

68 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

data shared by four modules should be system
data or module data. Currently all the decision
of the data classification is left to the user of
the proposed method, which may influences
the service extraction result.

To overcome the above limitation, we plan
to investigate a program refactoring method,
which counts the degree of ease of the SOA
migration for the given program structure. Also,
it is important in our future work to define a
quantitative metrics that evaluates the com-
monality of data.

Relation to Cohesion and
Coupling Metrics

The principle of the service extraction rules is
to aggregate multiple processes so that each
group forms a self-contained and loose-coupling
service. The similar principle can be found in
the classical software engineering metrics:
cohesion and coupling metrics.

The cohesion is a measure of how strongly-
related and focused the various responsibili-
ties of a software module are (Yourdon et al.,
1979; Lakhotia, 1993). There are seven types
of cohesion: coincidental (worst), logical, tem-
poral, procedural, communicational, sequential
and functional (best). Our interest here is to
evaluate the degree of cohesion of the derived

services. For each type of cohesion, we have
investigated the relation to the proposed service
extraction rules.

Figure 11 shows the summary. It shows an
action of the proposed method for processes
with a certain cohesion type. In our method,
processes with coincidental cohesion have no
dependency, and therefore they are separated
into different services. Processes with logical or
temporal cohesion may appear in the same DFD,
and they are sometimes linked by execution
context. In the proposed method, such processes
have condition dependency (CO), and can be
separated services. Processes with procedural
cohesion have transaction dependency (TR),
and thus must be integrated.

Processes with communicational or se-
quential cohesion have data dependencies.
Depending on the data is system or module
data, they are integrated or separated. Finally,
functional cohesion appears as a single atomic
process which cannot be divided further. So,
we extract the process as it is. Thus, we can say
that every service obtained by the proposed
method has procedural or higher cohesion.

On the other hand, the coupling is the de-
gree to which each program module relies on
each one of the other modules (Yourdon et al.,
1979; Al-Ghamdi et al., 2001). There are six

Figure 9. Services extraction from upper layer

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 69

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 10. Multi-grained services extracted from the whole system

Figure 11. Relationship between cohesion metrics and service extraction rules

70 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

types of coupling: content (highest), common,
external, control, stamp, and data (lowest).
The original definition of the coupling metric
was based on the way of data passing between
program modules. Hence, it has nothing to do
with our definition of data dependency based
on the commonality.

For instance, the external coupling occurs
when two processes share an externally imposed
data format (e.g., global variables), which was
regarded as relatively high coupling. However,
the proposed method counts the externally im-
posed data as the common data, which yields
weak dependency (i.e., low coupling). More-
over, the data coupling, which was regarded
as the lowest coupling, tends to yield strong
data dependency in the proposed method, since
the data is used locally by a limited number
of processes. Through this investigation, we
have realized that the classical coupling metric
defined within the structured analysis cannot be
used directly to measure the coupling between
SOA services.

Related Work

Lewis et al. (2008) developed a software process
called SMART, which provides preliminary
analysis of feasibility, strategy, cost and risk
for the legacy migration to the SOA. Cetin
et al. (2007) presented a migration approach
based on the service mash-up. These are total
frameworks of migration, where each step of
the migration must be implemented by concrete
methods. The proposed method can contribute
to implementing these frameworks, especially
in analyzing the legacy system for identifying
the existing reusable services.

Sneed (2006) proposed a method that
salvages and wraps the legacy source code.
In this method, the analyst identifies business
rules (i.e., services) at the source code level,
conducting data flow analysis focusing inter-
esting variables. However, the method does
not especially count the characteristics of the
SOA services. Thus, the derived services may

vary depending on the expertise of the analyst.
Our method takes Conditions S1-S3 explicitly,
which enables consistent and objective service
extraction.

Matos et al. (2009) presented a migration
method based on code graphs obtained from
annotated source code. As the authors men-
tioned, a big challenge lies in the functional
code annotation process identifying potential
services within the source code. For this, they
presented a couple of useful code patterns, but
the consolidation of the code patterns is left
to future work. Our method provides concrete
rules and procedures of the service extraction,
although the applications are limited to the
procedural programs only.

CONCLUSION

In this paper, we have presented a pragmatic
method that extracts SOA services from the
procedural program and its data flow diagram
(DFD), by analyzing data and control depen-
dency among processes. A case study with a
liquor shop inventory control system showed
that the proposed method can derive reasonable
consistent services with various granularities.
Our future work includes; the refactoring
method for efficient SOA migration, systematic
data classification, and evaluation metrics.

ACKNOWLEDGMENT

This research was partially supported by the
Japan Ministry of Education, Science, Sports,
and Culture, Grant-in-Aid for Young Scientists
(B) (No.217000 77).

REFERENCES

Al-Ghamdi, J., Shafique, M., Al-Nasser, S., &
Al-Zubaidi, T. (2001). Measuring the coupling of
procedural programs. In Proceedings of the IEEE
International Conference on Computer Systems and
Applications (pp. 297-303).

International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011 71

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T.,
Gariapathy, S., & Holley, K. (2008). SOMA: A
method for developing service-oriented solutions.
IBM Systems Journal, 47(3), 377–396. doi:10.1147/
sj.473.0377

Bell, M. (2008). Service-oriented modeling: Analy-
sis, design, and architecture. New York, NY: John
Wiley & Sons.

Benedusi, P., Cimitile, A., & Carlini, U. D. (1989).
A reverse engineering methodology to reconstruct
hierarchical data flow diagrams for software
maintenance. In Proceedings of the International
Conference on Software Maintenance (pp. 180-189).

Berkem, B. (2008). From the business motivation
model (BMM) to service oriented architecture. Jour-
nal of Object Technology, 7(8), 57–70. doi:10.5381/
jot.2008.7.8.c6

Cetin, S., Altintas, N. I., Oguztuzun, H., Dogru, A.
H., Tufekci, O., & Suloglu, S. (2007). Legacy migra-
tion to service-oriented computing with mashups.
In Proceedings of the International Conference on
Software Engineering Advances (pp. 21-21).

DeMarco, T. (1979). Structured analysis and system
specification (pp. 409–424). Upper Saddle River,
NJ: Yourdon Press.

Erl, T. (2007). SOA principles of service design.
Upper Saddle River, NJ: Prentice Hall.

Lakhotia, A. (1993). Rule-based approach to com-
puting module cohesion. In Proceedings of the 15th
Conference on Software Engineering (pp. 34-44).

Lewis, G. A., Morris, E. J., Smith, D. B., & Simanta,
S. (2008). Analyzing the reuse potential of legacy
components in a service-oriented architecture envi-
ronment (Tech. Rep. No. CMU/SEI-2008-TN-008).
Pittsburgh, PA: Carnegie Mellon University.

Matos, C., & Heckel, R. (2009). Migrating legacy
systems to service oriented architectures. Electronic
Communications of the EASST, 6.

Newcomer, E., & Lomow, G. (2004). Understand-
ing SOA with web services (Independent technology
guides). Reading, MA: Addison-Wesley.

O’Hare, A. B., & Troan, E. W. (1994) Re-analyzer:
From source code to structured analysis. IBM Systems
Journals, 33(1).

Papazoglow, M. P., & Georgakopoulos, D. (2003).
Service oriented computing. Communications of the
ACM, 46(10), 25–28.

Sneed, H. M. (2006). Integrating legacy software
into a service oriented architecture. In Proceedings
of the Conference on Software Maintenance and
Reengineering (pp. 3-14).

Yamazaki, T. (1984). Survey of program design
methodologies with a common problem. Journal
of Information Processing Society of Japan, 25,
934–935.

Yourdon, E., & Constantine, L. (1979). Structured
design: Fundamentals of a discipline of computer
program and systems design. Upper Saddle River,
NJ: Prentice Hall.

Masahide Nakamura received the BE, ME, and PhD degrees in Information and Computer Sci-
ences from Osaka University, Japan, in 1994, 1996, 1999, respectively. From 1999 to 2000, he
has been a post-doctoral fellow in SITE at University of Ottawa, Canada. He joined Cybermedia
Center at Osaka University from 2000 to 2002. From 2002 to 2007, he worked for the Graduate
School of Information Science at Nara Institute of Science and Technology, Japan. From 2007
to 2009, he moved to Graduate School of Engineering at Kobe University. He is currently an
associate professor in Graduate School of System Informatics at Kobe University. His research
interests include the service-oriented architecture, Web services, the feature interaction problem,
V&V techniques and software security. He is a member of the IEEE, ACM, IEICE, and IPSJ.

72 International Journal of Information Systems in the Service Sector, 3(4), 54-72, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Hiroshi Igaki received the BE degree (2000) in Department of Electrical and Electronics
Engineering from Kobe University, Japan, and the ME degree (2002) and DE degree (2005)
in Information Science from Nara Institute of Science and Technology, Japan. From 2006 to
2007, he worked for Faculty of Mathematical Sciences and Information Engineering, Nanzan
University, Japan. From 2007 to 2010, he joined the Graduate School of Engineering at Kobe
University. He is currently an assistant professor in Department of Computer Science, Tokyo
University of Technology. His research interests include communication support in software
development, home network systems and service-oriented architecture. He is a member of the
IEEE, ACM, IEICE and IPSJ.

Takahiro Kimura received the ME from Nara Institute of Science and Technology, Japan in 2006.
He is currently working for Nihon Unisys, Ltd., Japan. His research interests include service
oriented architecture, Web service, legacy migration.

Ken-ichi Matsumoto received the BE, ME, and PhD degrees in Information and Computer sci-
ences from Osaka University, Japan, in 1985, 1987, 1990, respectively. Dr. Matsumoto is cur-
rently a professor in the Graduate School of Information Science at Nara Institute of Science and
Technology (NAIST), Japan. His research interests include software metrics and measurement
framework. He is a senior member of the IEEE, and a member of the ACM, IEICE, IPSJ and JSSST.

