
Implementing and Evaluating Life-Log Mashup Platform
Using RDB and Web Services

Akira SHIMOJO, Shinsuke MATSUMOTO, Masahide NAKAMURA
Graduate School of System Informatics, Kobe University
1-1, Rokkodai-cho, Nada, Kobe, Hyogo 657-8501, Japan

shimojo@ws.cs.kobe-u.ac.jp, {shinsuke, masa-n}@cs.kobe-u.ac.jp

ABSTRACT
In order to support efficient integration of heterogeneous
lifelog services, we have previously proposed a lifelog mashup
platform consisting of the lifelog common data model (LL-
CDM) and the lifelog mashup API (LLAPI) to access the
standardized data. However, it had the performance bottle-
neck, and was poor in the portability. To cope with these
problems, we re-engineer the LLCDM and the LLAPI with
the relational database MySQL and the Web services, re-
spectively. Furthermore, we evaluate the practical feasibility
through an actual development project.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-Based services; D.2.12 [Software
Engineering]: Interoperability—Data Mapping ; H.3.4 [In-
formation Storage and Retrieval]: Systems and Soft-
ware—Distributed systems

General Terms
Design, Experimentation, Performance

Keywords
lifelog, data integration, common data model, mashup API,
Web services

1. INTRODUCTION
Lifelog (also known as life caching) is a social act to record

and share human life events in an open and public form [1, 2,
4]. Due to recent progress, a variety of lifelog services appear
in the Internet. Popular lifelog services include; blog for
writing diary, Twitter for delivering tweets, Flickr for storing
pictures, BodyLogService for recording body measurements
like weight and fat.

In general, both storage and application are enclosed within
the same lifelog service. Integrating such scattered lifelogs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam.
Copyright 2011 ACM 978-1-4503-0784-0/11/12 ...$10.00.

would implement more sophisticated and value-added ser-
vices, rather than using them separately. We call lifelog
mashup to represent such integration of different lifelog ser-
vices over the Internet.

To support efficient lifelog mashup, we presented a lifelog
mashup platform consisting of the lifelog common data model
(LLCDM) and the lifelog mashup API (LLAPI) in the pre-
vious work [3].

However, there were two major limitations in the previ-
ous implementation. The LLAPI was implemented as Perl
libraries that access the local file system storing XML data
of the LLCDM. Therefore, the API had quite low perfor-
mance and poor portability. Also, the library-based develop-
ment posed developers artificial dependencies in program-
ming language, platform and the version maintenance.

In this paper, we re-engineer the LLCDM and LLAPI
using a relational database and Web services, respectively.
Another contribution of this paper is to evaluate the prac-
tical feasibility of the LLCDM and the LLAPI. Specifically,
we conduct an experiment where developers implement a
practical mashup application, called Tabetalog, by integrat-
ing two heterogeneous services: Flickr and BodyLogService.
The application is developed by two processes: one with the
conventional APIs, and another with the proposed LLCDM
and LLAPI. We compare the two different approaches from
viewpoints of product and process.

2. PRELIMINARIES

2.1 Lifelog Services and Mashups
As mentioned in Section 1, there are a variety of lifelog

services available in the Internet and integrating different
lifelogs may create more values rather than using them sep-
arately. In this paper, we define a term lifelog mashup to
refer to such integration of different lifelogs to create a value-
added service. For example, integrating Twitter and Flickr,
we may easily create a photo album with comments (as
tweets).

Expecting the lifelog mashup, some lifelog services are
already providing APIs and/or blog components to access
the lifelog data. However, there is no standard specification
among such APIs or data formats of the lifelog.

To support efficient lifelog mashup, we have previously
proposed a lifelog mashup platform [3]. The platform con-
sists of the lifelog common data model (LLCDM) and the
lifelog mashup API (LLAPI), as shown in Figure 1. The data
stored in heterogeneous lifelog services are transformed and
aggregated in the LLCDM, which is an application-neutral

503

Emerging Research Projects Applications Symposium (ERPAS) iiWAS2011 Proceedings

FoodLogBETA

Manage your photos of foods

Mashup
App.1

Common Data Model

(LLCDM)

Generic APIs

(LLAPI)

Mashup
App.2

Mashup
App.3

Transform /
Aggregate

BodyLog

Figure 1: Proposed lifelog mashup platform [3]

form among the lifelog services. The LifeLog Mashup API
(LLAPI) is for searching and retrieving lifelog data conform-
ing to the LLCDM. The following shows an API that returns
lifelog data matching a given query.

getLifeLog(date, time, user, party,

object, location, application, device)

Using getLifeLog(), heterogeneous lifelogs can be accessed
uniformly without proprietary knowledge of lifelog services.

2.2 Limitations in Previous Work
In [3], we have prototyped the LLCDM repository and the

LLAPI. However, we found in the prototype that there were
two major limitations for practical use.

The first limitation is in the performance. In the proto-
type, the LLCDM repository was just a file system contain-
ing converted data as raw XML files. Thus, we could not
ignore the overhead if we use the LLAPI for the online data
mashup.

Another limitation is in the portability. In the prototype,
we provided the LLAPI as a program library written in the
Perl language. Therefore, there was no choice for developers
to use other languages for building mashup applications.

To overcome these limitations, we aim to achieve the fol-
lowing two goals.

G1: Improve performance and portability of the prototype.

G2: Evaluate the practical feasibility of the LLAPI.

To achieve the goal G1, we put all the lifelog data in a rela-
tional database, instead of having the data as raw XML files.
We aim faster data search and access. We re-engineer the
LLAPI as a wrapper program of the SQL and deploy the pro-
gram as a Web service, providing the platform-independent
access to the lifelog data.

To achieve the goal G2, we conduct an application devel-
opment experiment. In the experiment, we ask subjects to
implement two versions of a mashup application, with and
without the proposed LLAPI and the LLCDM. The con-
ventional and proposed approach will be compared from the
viewpoints of process and product.

3. ENHANCING LIFELOG MASHUP PLAT-
FORM

UserID FirstName, LastName, Password, Email

AppName Provider, URL, ref_scheme

UserID+Date

+sequentialID

AppName, Device, Date, Time,

Party, Object, LocationID, Content

LocationID Longitude, Latitude, geo

Application

Location

User

LifeLog

shimojo Akira, Shimojo, ***, shimojo@ws...

Twitter Twitter Inc., http://flickr.com,

http://flickr.com/services/api

shimojo+2010-03-05 Flickr, RICOH CX3, 2010-03-05, 12:00:00,

+001 masa-n, saorin, L000082, <photo id=“...

L000082 34.76, 15.24, 1-1 Nada Kobe

Figure 2: ER diagram for the LLCDM repository

3.1 RDB for managing LLCDM repository
To improve the performance, we introduce the relational

database to manage the LLCDM repository (See Figure 1).
Figure 2 depicts the proposed ER diagram of the LLCDM.
A box represents an entity (i.e., table), consisting of an en-
tity name, a primary key and attributes. We enumerate
instances below each entity to support understanding. A
line represents a relationship between entities, where +—∈
denotes a parent-children relationship, and +—· · · denotes
a reference relationship. The diagram consists of the four
tables.

User table manages the user information, consisting of
UserID, Username, Password and E-mail address. In Ap-
plication table, we manage the applications from which we
retrieve the lifelog data record. The attributes of the ta-
ble are Application name, Provider, URL, Description and
Reference URL. LifeLog is a main table to store lifelog data
retrieved, consisting of every item of the LLCDM. The pri-
mary key is a composite key of UserID, Date and serial num-
ber, since our empirical study shows that the lifelog data is
often searched by UserID and Date. Location table stores
the location data in the WHERE perspective. The table
consists of address, latitude and longitude.

3.2 Importing Lifelog Data to LLCDM Repos-
itory

Next, we consider how to import data from heterogeneous
lifelog services to the LLCDM repository. The process con-
sists of the following three steps:

(Step1) Obtain original data: We obtain the origi-
nal lifelog data from heterogeneous lifelog services and
store the data in XML.

(Step2) Transform data to LLCDM: We then trans-
form the original raw data to the LLCDM format. In
this step, we maps the original data to each item of the
LLCDM, based on a conversion rule defined for each
individual service in [3].

(Step3) Insert data into database: Finally, we insert
the XML into the database. We parses the converted
XML data, extracts the attributes and inserts the val-
ues to appropriate tables in Figure 2.

The reason why we split the data import task into three
steps is to improve the system maintainability. For example,
even if the specification of Flickr API is changed, we just
update the crawler for Flickr only, and we need not to touch
other programs.

504

iiWAS2011 Proceedings Emerging Research Projects Applications Symposium (ERPAS)

Table 1: Comparison of execution time
Q1 Q2 Q3 Q4

SOAP(sec) 0.131 1.006 0.281 0.422
REST(sec) 0.015 0.100 0.019 0.025
OLD(sec) 4.238 4.028 4.254 0.581
of items 36 119 195 449

data size (kB) 118 381 1,450 630

3.3 Re-engineering LLAPI
Since the lifelog data is imported in the relational database

reflecting the LLCDM format, the LLAPI is easily imple-
mented as a query program wrapping an SQL statement.
We implemented the LLAPI in the Java language. We used
iBatis OR-mapper for marshaling tuples into objects. The
advantage of using the OR-mapper is to decouple the SQL
statements from the Java code, which improves the robust-
ness and the maintainability of the system.

Finally, we deploy the LLAPI as a Web service. A great
advantage of using the Web service is to free the LLAPI from
the artificial dependencies on the language and platform.
We have deployed the LLAPI using the Apache Axis2 Web
service framework. Now that the LLAPI can be accessed by
both SOAP and REST Web service protocols.

3.4 Evaluating Performance
We compare the performance of the old prototype (see

Section 2.2), and the new implementation developed in this
paper. At the time of the evaluation, 1,591 records of lifelog
data were stored in the MySQL database or in the XML
files. For the performance measurement, we developed Perl
clients to invoke the LLAPI with the following queries.

Query 1: Get lifelog data taken between 2010-10-15 and
2010-10-16

Query 2: Get lifelog data taken between 2010-09-01 and
2010-09-30

Query 3: Get lifelog data taken between 09:00:00 and 10:15:00
on any date.

Query 4: Get lifelog data taken by user “Shimojo”

For each query, we executed the LLAPI five times, and mea-
sured the average execution time. For the new version, we
tried both SOAP and REST invocations. Just for the refer-
ence,

Table 1 shows the execution time, measured for the four
queries. The fourth and fifth rows of the table respectively
show the number of items and the data size retrieved by
the queries. It can be seen, in Table 1, that the effective
performance for the new version (REST) has been improved
significantly from 23 to 275 times. Much of this improve-
ment owes to the performance of MySQL. Also, we can see
that REST performs 8 to 16 times better than SOAP in ev-
ery case. However, we can still accept the SOAP overhead
compared with the old version. Thus, we believe that the
re-engineering of the mashup platform achieved the goal G1
in Section 2.2.

4. APPLICATION DEVELOPMENT EXPER-
IMENT WITH LLAPI

Figure 3: A screenshot of TabetaLog

4.1 Mashup Example: TabetaLog
This section conducts an experimental evaluation of devel-

oping a practical lifelog mashup application, called Tabeta-
Log, in order to achieve the goal G2 in Section 2.2.

The TabetaLog is a mashup application supporting user’s
eating habits, visualizing weight and pictures of foods taken
every day. This application obtains the picture data and the
weight data from Flickr and BodyLogService respectively,
and integrates the record according to the date. A screen-
shot of TabetaLog is shown in Figure 3. The process of im-
plementing TabetaLog consists of the following four steps:

Step1 (Obtain original lifelog records): Obtain lifelog
data using proprietary APIs of Flickr and BodyLogSer-
vice or the proposed LLAPI.

Step2 (Extract data items): Extract necessary data
items by parsing records obtained in Step1. Specifi-
cally, select [date, user, value] from BodyLogService,
and [time, picture URL] from Flickr.

Step3 (Join data items): Join the data items extracted
in Step2 on their date. Finally, the joined records are
dumped to a file in JSON format.

Step4 (Create TabetaLog): Visualize the JSON data
using ActionScript. In the script, the weight records
are drawn with a graph, and the pictures are displayed
when the user clicks a point on the graph.

4.2 Overview of Experiment
The goal of the experiment is to show the practical feasi-

bility of the proposed LLAPI. In the experiment, five subject
implements a program generating the TabetaLog JSON file
(via Step 1 to Step 3 of Section 4.1). Specifically, we instruct
the subjects to implement two versions of the program: one
is with the proposed LLAPI and another is with the conven-
tional API. In the following, let Pllapi represent a process
(or product) that uses the proposed LLAPI. Also, let Pconv

stand for a process (or product) that uses the conventional
API.

The subjects were instructed to mashup the weight records
and the picture records of user “Shimojo” and “Tokunaga”
for one year (since 2010-05-18 to 2011-05-17), and to output
the resulting JSON file.

505

Emerging Research Projects Applications Symposium (ERPAS) iiWAS2011 Proceedings

Table 2: Result of experiment
Subject A B C D E Correct
Order of Development Pllapi→Pconv Pconv→Pllapi Pconv→Pllapi Pconv→Pllapi Pllapi→Pconv —

Pllapi Pconv Pllapi Pconv Pllapi Pconv Pllapi Pconv Pllapi Pconv Pllapi Pconv

Programming language Perl Perl Perl Perl Java Java Java Java Java Java — —
SLOC 115 365 227 379 480 612 423 397 150 181 — —
SLOC(w.out blank and comments) 71 223 103 188 351 426 286 263 106 125 — —
of source-code classes n/a n/a n/a n/a 7 7 5 5 2 2 — —
of source-code files 1 4 1 3 n/a n/a n/a n/a n/a n/a — —
Man-hour (man-minute) 114 196 54 205 96 252 147 514 132 397 — —
of weight records <Shimojo> 53 54 53 54 32 53 53 54 52 52 53 54
of weight records <Tokunaga> 102 101 102 101 52 103 103 104 103 115 102 101
of picture records <Shimojo> 8 9 8 9 8 9 8 9 8 9 8 9
of picture records <Tokunaga> 85 86 85 86 60 87 85 44 65 85 85 86

Table 3: Evaluation perspectives and metrics
Evaluation perspectives metrics
Program files Total lines of codes (SLOC),

Number of source-code files (or classes)
Output JSON Files Number of weight record，

Number of picture record
Development Process Man-hour

4.3 Evaluation Metrics
The experiment has been evaluated from viewpoints of

product and process. Table 3 summarizes the evaluated per-
spectives and metrics.

The product viewpoint includes two objects: program files
(source code) and the JSON file (created data). For the pro-
gram files, we measure the total lines of codes (SLOC) and
number of source-code files (or classes). Also we measure
the number of weight records and picture records, to check
the correctness of source code and JSON file.

As for the development process perspective, we use the
metric “man-hour”, characterizing effort of the development.
After the development, we carried out a questionnaire to the
subjects to gather subjective opinions and feedback.

Question 1: Which task did you spend the most time for?

Question 2: How did you feel using the LLAPI?

4.4 Experiment Result
Table 2 shows the results for the five subjects (A, B, C,

D, E). For each subject, Pllapi and Pconf are compared ac-
cording to the metrics in Table 3. The last column“Correct”
represents the correct answers for the generated JSON file,
to check the correctness of the program.

First, we focus on the total lines of code (SLOC). It can
be seen that four of the five subjects decreased the SLOC in
Pllapi. Specifically, the SLOC of Pllapi was 0.72 time smaller
than that of Pconv on an average.

Next, we compare the man-hour. All of the five subjects
decreased the man-hour regardless of the order of the de-
velopment processes. Especially, subject D achieved Pllapi

four times faster than Pconv. According to the JSON files
obtained, we found that only A and B implemented the cor-
rect program.

Finally, we show the result of the subsequent question-
naire. Most frequent answer for Question 1 was “Under-
standing API specification”in both processes Pllapi and Pconv.
For Question 2, the subjects gave positive answers like,“Very

convenient”and“Easy to process the multiple lifelog records”.
We also obtained some comments and requests for the LLAPI
including, “Want to obtain contents of the content table by
the LLAPI” or “Want to aggregate different usernames for
the same user entity”.

5. CONCLUSION
To improve the performance and portability, we have re-

engineered the lifelog mashup platform [3], consisting of the
LLCDM (LifeLog Common Data Model) and the LLAPI
(LifeLog Mashup API). We have also evaluated the practi-
cal feasibility of the proposed method through development
experiment. It was shown in the experiment that the pro-
posed method can efficiently reduce the development effort
of the mashup application. Also further efficiency is ex-
pected when a more number of services are integrated.

Our future work includes investigation of ontology-based
approach and enhancement of the LLAPI for more sophisti-
cated data integration. We also plan to study potentials of
lifelog mashups for business and education.

6. ACKNOWLEDGMENTS
This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (B) (No. 23300009), Young Sci-
entists (B) (No. 21700077), Research Activity Start-up (No.
22800042)], and Hyogo Science and Technology Association.

7. REFERENCES
[1] J. Gemmell, G. Bell, and R. Lueder. MyLifeBits: A

personal database for everything. Comm. ACM,
49:88–95, January 2006.

[2] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and
C. Wong. MyLifeBits: Fulfilling the memex vision. In
Proc. ACM Int’l Conf. Multimedia, pages 235–238,
2002.

[3] A. Shimojo, S. Kamada, S. Matsumoto, and
M. Nakamura. On integrating heterogeneous lifelog
services. In Proceedings of the 12th International
Conference on Information Integration and Web-based
Applications & Services, iiWAS ’10, pages
263–272. ACM, 2010.

[4] Trend Watching .com. Life caching – an emerging
consumer trend and related new business ideas. http:
//trendwatching.com/trends/LIFE_CACHING.htm.

506

iiWAS2011 Proceedings Emerging Research Projects Applications Symposium (ERPAS)

	iiWAS2011 537
	iiWAS2011 538
	iiWAS2011 539
	iiWAS2011 540

