
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

TECHNICAL REPORT OF IEICE.

Evaluating Lifelog Common Data Model and Mashup API

through Practical Application Development

Akira SHIMOJO†, Shinsuke MATSUMOTO†, and Masahide NAKAMURA†

† Kobe University Rokkoudai 1–1, Nada, Kobe, Hyogo, 657–8531 Japan

E-mail: †shimojo@ws.cs.kobe-u.ac.jp, ††{shinsuke,masa-n}@cs.kobe-u.ac.jp

Abstract In order to support efficient integration of heterogeneous lifelog services, we have previously proposed

the lifelog common data model (LLCDM) and the lifelog mashup API (LLAPI). In this paper, we evaluate the

efficiency of the LLCDM and the LLAPI through a practical application development project. Specifically, we im-

plement two versions of an integrated lifelog application with and without the LLCDM and the LLAPI. We compare

the two versions from viewpoints of the quality of the product as well as the efficiency of the development process.

Key words Lifelog, Mash up, Common data model, Web service, Database

1. INTRODUCTION

Lifelog (also known as life caching) is a social act to record

and share human life events in an open and public form [1].

Due to recent progress on storage and network technologies,

a variety of lifelog services appear in the Internet. Using

these services, we can easily store, publish and share various

types of lifelogs on the Web. Popular lifelog services include;

blog for writing diary, Twitter [2] for delivering one’s status

known as tweets, Flickr [3] for storing and sharing pictures,

FoodLog [4] for photographing daily meals, GARMIN Con-

nect [5] for managing training data with GPS.

In general, both storage and application are enclosed

within the same lifelog service. Thus, various types of lifelog

records are scattered over different service providers. In-

tegrating such scattered lifelogs would implement more so-

phisticated and value-added services, rather than using them

separately. We call lifelog mashup to represent such integra-

tion of different lifelog services over the Internet. As means

of the lifelog mashup, some of lifelog services are providing

Web services, APIs, blog components, etc., which allow ex-

ternal programs to access the lifelog record. However, the

access methods are all different from service to service, since

there is no standard specification. Such heterogeneity poses

significant effort in developing mashup applications.

To support efficient lifelog mashup, We presented the

lifelog common data model (LLCDM) and the lifelog mashup

API (LLAPI) in the previous work [6] [7]. The LLCDM

prescribes a generic data schema for lifelog records, which

does not rely on any specific lifelog service. To build an

application-neutral model, we conduct an interrogative anal-

ysis, deriving data items from viewpoints of what, why,

when, who, where and how. We then develop the LLAPI

to manipulate data records conforming to the LLCDM. The

LLAPI provide a standard way to retrieve data from hetero-

geneous lifelog services.

In this paper, we evaluate the efficiency of the LLCDM

and the LLAPI through a practical application development

project. Concretely, we implement a mashup application

called Tabetalog integrating two heterogeneous services: ser-

vice that records picture called Flickr and the service records

weight and body fat percentage called BodyLogService. The

application is developed in two ways: one process with the

conventional APIs, and another process with the LLCDM

and LLAPI.

2. PRELIMINARIES

2. 1 Lifelog

As introduced in Section 1., there are a variety of lifelog

services available in the Internet. The great success of these

services lies not only in information technologies, but also

in the nature of human beings, loving to collect and store

possessions, memories, experiences [1].

For these lifelog services, “what to log” is a selling point,

and it varies from service to service. End users choose fa-

vorite services depending on their purpose. In general, stor-

age and application are enclosed within the same lifelog ser-

vice. Thus, various types of lifelog records are scattered over

different service providers.

2. 2 Lifelog Mashup

Integrating such scattered lifelogs may create more values

— 1 —



FoodLogBETA

Manage your photos of foods

Mash-up

App. 3

Mash-up

App. 2

Mash-up

App. 1

LLCDM

Transform

Aggregate

LLAPI

Figure 1 Mashup Approach Proposed in [6] and [7]

rather than using them separately. In this paper, we define

a term lifelog mashup to refer to such integration of differ-

ent lifelogs to create a value-added service. For example,

integrating Twitter and Flickr, we may easily create a photo

album with comments (as tweets). Also, integrating FoodLog

and karadalog [8], a doctor may find a symptom of lifestyle

related disease by analyzing statistics on eating habits and

body measurements.

Assuming the lifelog mashup, some of the lifelog services

are providing Web services, APIs, and/or blog components,

which allow external programs to access the lifelog data.

However, there is no standard specification among such APIs

or data formats of the lifelog.

3. PREVIOUS WORK

To support efficient lifelog mashup, we presented the lifelog

common data model (LLCDM) and the lifelog mashup API

(LLAPI) in the previous work [6] [7]. Figure 1 shows the

overview of the LLCDM and the LLAPI.

3. 1 LifeLog Common Data Model(LLCDM)

The data stored in heterogeneous lifelog services are

transformed and aggregated in the LLCDM, which is an

application-neutral form among the lifelog services.

Table 1 shows the data schema of the LLCDM. We ar-

ranged the data items which lifelog records should prepare

from the viewpoints of what, why, who, when, where and

how. Then, we defined the “common data store” which does

not depend on specific service and application.

We keep the lifelog data conformed to the LLCDM by a

relational database. This maintains the accuracy and the

access speed of reference, and the performance and the reli-

ability.

3. 2 LifeLog Mashup API(LLAPI)

LifeLog Mashup API(LLAPI) is for searching and retriev-

ing lifelog data conforming to the LLCDM, which can be

used extensively for building lifelog mashups.

getLifeLog(s_date, e_date, s_time, e_time, user,

Table 1 Common Data Schema of LLCDM
perspective common data items explain

WHEN <date> Date when the log is created

<time> Time when the log is created

WHO <user> Subjective user of the log

<party> Party involved in the log

<object> Objective user of the log

WHERE <address> Street address where the log is created

<latitude> Latitude where the log is created

<longitude> Longitude where the log is created

HOW <application> Service/application by which the log

is created

<device> Device with which the log is created

WHAT <content> Contents of the log(whole original data)

<ref schema> URL references to external schema

WHY n/a n/a

location, application, device)

Paramaters:

s_date: Query of <date>

e_date: Query of <date>

s_time: Query of <time>

e_time: Query of <time>

user: Query of <user>

party: Query of <party>

object: Query of <object>

location: Query of <location>

application: Query of <application>

device: Query of <device>

Developer uses the LLAPI for implementing mashup ser-

vices or applications. Using the LLAPI, all of lifelogs can

accessed by common APIs without any knowledge of each

lifelog record format.

Currently, we implemented the LLAPI as a Web service

(SOAP/REST) so that a lot of programming languages and

platforms are able to access the LLAPI.

4. BUILDING A MASHUP APPLICA-

TION

In this section, we conduct an experimental evaluation

of developing a practical lifelog mashup application, called

TabetaLog, by integrating two heterogeneous services: Flickr

and BodyLogService. To evaluate the effectiveness of the

LLCDM and LLAPI, TabetaLog is developed in two ways:

the one process with the conventional APIs, and the another

process with the proposed LLCDM and LLAPI.

4. 1 TabetaLog

TabetaLog is an application supporting eating habits,

which visualizes weight graph and pictures recorded in every-

day. This application obtains the two kinds of record from

Flickr and BodyLogService respectively, and integrates the

record according to date.

Users take daily food photographs by mobile devices (e.g.,

— 2 —



Figure 2 TabetaLog

digital camera, PDA, mobile phone, etc.,). The photographs

are uploaded to Flicker. Also, users weigh him/herself once

a day using a body scale and register the records to Body-

LogService. Next, TabetaLog obtains these records from

Flickr and BodyLogService, integrates the records, and out-

puts the result to a file in JSON format. Finally, using Ac-

tionScript, the JSON data is visualized as integrated graph

which has a weights graph and food photos.

A screenshot of TabetaLog is shown in Figure 2. Figure 2

shows the weight graph of a user “Tokunaga” for 180 days.

When a user clicks a day on the graph, the picture which

took the pointed day displayed in lower left of the screen. A

granularity of graph points is selected by bottom radio but-

tons (7days, 30days, 180days or 1year). Also users can see

other user’s records.

4. 2 Mashup Services

We explain two web services, Flickr and BodyLogService,

mashuped by TabetaLog.

4. 2. 1 Flickr

Flickr is an online picture album service provided by Ya-

hoo! Inc. We can arrange, classify and/or exhibit pho-

tographs taken by ourself and see other users’ photographs,

and comment on the photos on the web.

At present, about 180 kinds of API are being shown in

Flickr，and it becomes possible to search and obtain the pic-

ture and the user, etc. from various conditions1.

4. 2. 2 BodyLogService

BodyLogService is a weight control service developed in

our laboratory. We are measuring daily weights and body

fat percentages using BodyLogService.

Currently, five kinds of BodyLogService API are available

for obtain the measured weight record. These API supports

weight record obtaining by user and by date.

1http://www.flickr.com/services/api/

Perl 
WeightLogger

Step1 

JSON

LLCDM
LLAPI

Picture

Data

Wight

Data

<Date>

<Time>

<URL>

<Date>

<Value>

JSON

APIAPI

Picture

Data

Wight

Data

<Date>

<Time>

<URL>

<Date>

<Value>

Step2 

Step3 

Step4 

Figure 3 The Process of Implementing TabetaLog

4. 3 Implementation of TabetaLog

We explain the process of implementing TabetaLog. Fig-

ure 3 shows the process of implementing TabetaLog. The

process consists of the following four steps:

Step1 (Obtain original lifelog record) : Obtain lifelog

record using APIs or Web services provided by Flickr and

BodyLogService or LLAPI.

Step2 (Extract data items) : Extract necessary data

items by parsing records obtained in Step1. Specifically, se-

lect [date, user, value] from BodyLogService, and [time, pic-

ture URL] from Flickr.

Step3 (Join data items) : Join the data items extracted

in Step2 on their date. Note that a joining key is based on

date values of weight record. Therefore, if Flickr’s record

existed but BodyLogService’s record didn’t exist on one day,

we ignore the Flickr’s record. Finally, the joined records are

dumped to a file in JSON format.

Step4 (Create TabetaLog) : Visualize the JSON data

using ActionScript. A weight record is displayed in a graph,

and a picture record is displayed when a user clicks the same

date.

5. EVALUATION EXPERIMENT

In this section, we explain an experiment of evaluating the

effectiveness of LLCDM and LLAPI. In the experiment, all

subjects create an input data file for TabetaLog with LLAPI

and without LLAPI. Then, we evaluate the efficiency of de-

velopment from qualitative perspective and quantitative per-

spective.

— 3 —



{

number: 56, 

user: "shimojo", 

start: "2010-05-18", 

end: "2011-05-17", 

data: [ 

{

date: "2010-09-07", 

weight: "63.4“,

foods: [ 

{

URL: "http://farm5.static.flickr.com/

4113/4966191951_7edf219990_m.jpg", 

time: "13:17:28",

},

{

URL: ・・・,

time: ・・・, 

}

]

}, 

{

・・・

},

・・・

]

} 

Figure 4 JSON Format

5. 1 Overview of Experiment

In the experiment, three master students and two teach-

ers participate. All of five subjects belong to department of

information science, and they are well-trained programmers.

They obtain the records which are necessary for TabetaLog

implementation with following two ways and output that in

a JSON format (from Step1 of Section 4 to Step3).

PLLAPI : Using the LLAPI

PCONV : Using the proprietary APIs

They obtain weight record and picture record of a user

“Shimojo” and “Tokunaga” for one year (since 2010-05-18

to 2011-05-17) in JSON format explained at Figure 4. They

develop a mashup program by two ways PLLAPI and PCONV

for comparing and conventional method. The order of devel-

opment way is predetermined for avoiding a habituation of

development. Two people are PCONV first, and PLLAPI sec-

ond, and three people are PLLAPI first, and PCONV second.

They freely develop by their favorite programming lan-

guage, APIs and experiment environment. However, they

have to record the time of experiment using TaskPit 2 which

is a tool for measuring the PC tasks automatically.

Finally, we carry out a questionnaire to subjects. The

question includes about usability of LLAPI and impression

of experiment.

5. 2 Evaluation of Development

To evaluate the development process and product, we de-

cide to evaluate from the viewpoint of quantitative and qual-

itative. “Product” includes two object, the one is the JSON

file that is output result and another is source-code files

which create the JSON file. Evaluation perspectives and

metrics are shown in Figure 5.

2http://taskpit.jpn.org/index.html

* Quantitative

Program files

- Total lines of codes (SLOC)

- Number of source-code files (or classes)

Development process

- Man-hour

JSON Files

- Number of weight record

- Number of picture record

* Qualitative

Questionnaire

- Usability of LLAPI

- Review of development

Figure 5 Evaluation Perspectives and Metrics

Table 3 A kind of Flickr API

subject Flickr API

A photos.search

B people.getPublicPhotos

C photos.search / photos.getInfo

D photos.search / photos.getInfo

E photos.search

From the quantitative viewpoint, we measure total lines of

codes (SLOC) and number of source-code files (or classes).

These metrics are generally used as a criterion to describe

a scale of development product. We also measure man-hour

that includes all time spent for the development (program-

ming, testing, searching API specification, etc.,). Also we

measure number of weight records and picture records to

check the accuracy and correctness of source code and JSON

file. This metrics represents that generated JSON file does

not have duplications or missing of records.

From the qualitative viewpoint, we carry out a question-

naire in the last of the experiment, and demand an opinion

about the impression through the experiment or the thing

that they noticed.

5. 3 Resullt

We show the result of experiment in Table 2. “Correct”

row in Table 2 means corrected answers for generated JSON

file. The reason why the corrected answers are different in

PLLSPI and PCONV is that there were some duplication and

some missing in database of LLCDM. “Order” line in Table 2

means which process are conducted at first. In addition, we

show a kind of Flickr API used by each subject in Table 3.

Results of each questionnaire are shown in Table 4 to Table

6.

From a quantitative viewpoint, four of five subjects de-

creased total lines of codes of the source-code files in PLLAPI .

— 4 —



Table 2 Result of Experiment from Quantitative Viewpoints

Subject Correct A B C D E

Order — PLLAPI→PCONV PCONV →PLLAPI PCONV →PLLAPI PCONV →PLLAPI PLLAPI→PCONV

PLLAPI PCONV PLLAPI PCONV PLLAPI PCONV PLLAPI PCONV PLLAPI PCONV PLLAPI PCONV

Program Development

Programming language — — Perl Perl Perl Perl Java Java Java Java Java Java

SLOC — — 115 365 227 379 480 612 423 397 150 181

SLOC(w.out blank and comments) — — 71 223 103 188 351 426 286 263 106 125

# of source-code classes — — n/a n/a n/a n/a 7 7 5 5 2 2

# of source-code files — — 1 4 1 3 n/a n/a n/a n/a n/a n/a

Man-hour (man-minute) — — 114 196 54 205 96 252 147 514 132 397

Mashup JSON Data Obtained

# of weight records <Shimojo> 53 54 53 54 53 54 32 53 53 54 52 52

# of weight records <Tokunaga> 102 101 102 101 102 101 52 103 103 104 103 115

# of picture records <Shimojo> 8 9 8 9 8 9 8 9 8 9 8 9

# of picture records <Tokunaga> 85 86 85 86 85 86 60 87 85 44 65 85

Table 4 Question1. Which tasks did you spend the most time?

(multiple answers allowed)

PLLAPI PCONV

Understanding API specification 2 3

Obtaining lifelog record 0 1

Extracting data records 0 1

Joining data records to JSON 1 0

Others 1 0

This means product scale has become about from 0.3 times

to 0.8 times compared with in PCONV . Moreover in PLLAPI

subject A and B who are Perl programmers completed the ex-

periment from a single source-code file. However, they need

to create four or three sources in PCONV . This difference

was not seen in Java developers.

All of five subjects decreased the man-hour whichever they

implement first by PLLAPI or PCONV . Especially, subject D

decreased one-quater compared with PCONV .

About mashup JSON files, only two subjects obtained the

correct record that both of the user “Shimojo” and “Toku-

naga” whichever by PLLAPI and PCONV .

From a qualitative viewpoint, we carried out question-

naires. Answers of a question “Which tasks did you spend

the most time?” is shown in Table 4. Most frequent an-

swer was “Understanding API specification” both of PLLAPI

and PCONV . In PLLAPI a subject answered “Joining data

records to JSON”, however in PCONV , subjects answered

“Obtaining lifelog record” and “Extracting record items”.

Secondly, we asked “Impression through an experiment”

(shown in Table 5). They answered “Very convenient”, “the

development effort and the amount of coding becomes small”

and “easy to process the multiple lifelog records”. Also some

requests for LLAPI obtained. These are “Want to obtain

contents of the Content table by LLAPI” or “Want to ab-

sorb the difference of user-names for each lifelog service”.

Finally, the question “Impression through an experiment

(Table 6)”, there were a lot of impression that it took time

to a part different from the essence of the experiment such

as “I had a hard time to generate JSON file”.

5. 4 Discussion

We discuss about the result of an experiment in 5. 3.

5. 4. 1 Development Efficiency of Application

Compared with conventional method, the efficiency of

mashup development using LLAPI is clearly improves from

the quantitative results in Table 2, and the questionnaires

in Table 5 and Table 6. In the experiment, we integrated

two heterogeneous lifelog services. However we think that

the efficiency would be more remarkable if a greater vari-

ety of lifelog services required. Because understanding API

specifications require much effort.

5. 4. 2 The Accuracy of the Data Obtained

From accuracy perspective, the correctness of generated

JSON file are same in PLLAPI and PCONV . We expected

that implementing with PLLAPI improves the correctness

compared with PCONV because source codes become sim-

ple and small. We guess this cause to be that LLAPI didn’t

support logics such as joining the record by date. In this

case, the subjects were necessary to obtain the two kinds of

lifelog records Flickr and BodyLogService. However, LLAPI

currently does not have a method that joins multiple record

by date, user or application. Therefore, subjects need obtain

two lifelog records separately and need to create a logic of

record joining in both cases.

5. 4. 3 Limitations

At first, there is a limitation about the flexibility of LLAPI.

As explained in 5. 4. 2, LLAPI must support mashup request

such as obtaining a variety of lifelog records at single API

call to adapt a wide variety of lifelog services. For that rea-

son, there is our future work that implementing more LLAPI

functions for obtain multiple lifelog records at the same time

or obtain by same date,

Secondly, we consider about preserving method of the con-

— 5 —



Table 5 Question2. How did you feel using LLAPI?

- Second task PCONV could easily develop by reusing source codes written at first task PLLAPI . However, I spent great deal of

effort to understand Flickr API specifications.

- I thought that the difference of development effort becomes extremely large if three or more lifelog services mashuped.

- I felt LLAPI was very convenient. LLAPI was not necessary to use many APIs like Flickr because all data displayed by the list I

wanted to obtain.

- I thought it was better when contents of the Content table were possible to get by LLAPI.

- LLAPI was very convenient, but I doubted it reliability and real time.

- Because the API and the data format retrieved were standardized, it was able to process the multiple lifelog records easily.

- I wanted the LLAPI to absorb the differences of the user name at each service.

- I want to obtain the mashuped data by specifying some user names or some application names. For example,

getLifeLog(..., application=Flickr,BodyLogService) is greate.

Table 6 Question3. Impression through the experiment

- I had trouble with a few part in the essence of experiments such as the JSON conversion.

- Because the preliminary knowledge was personally insufficient, it took very time.

- I had a hard time because I had made the generation of the JSON file by itself.

- I was bewildered to the results retrieved each way was different.

- It was difficult to find the API because Flickr provides too many APIs.

tent table. Currently, whole of the content table are same

as original record without processing or revising. So LLAPI

user has to understand the structure of original record when

they want to obtain the data (e.g., picture URL of the

Flickr). However, because the structures of original record

are completely different for each lifelog service, it is very dif-

ficult to define data schemas. Therefore, we are considering

the storage methods that use a schemaless approach such as

NoSQL and KVS.

Finally, we have to develop a method that absorbs the dif-

ference of the username varied for different services. There

isn’t uncommon that a user registers a different usernames

for difference services. For example a user “Shimojo” has a

different username, “jo shimo23” as a Flickr name and “Shi-

mojo” as a BodyLifeLogger. If lifelog service increases, a

variety of user names are increased. To solve such a prob-

lem, LLCDM should have user definition table and supports

API calling by using representative user names such as Sin-

gle Sign-On. For example, if a user only specifies “Shimojo”,

LLAPI respectively interprets “Shimojo” and “jo shimo23”

for Flickr and BodyLifeLogger.

6. CONCLUSION

In this paper, we have evaluated the efficiency of the LL-

CDM and LLAPI through a practical application develop-

ment project. We experimented the developing mashup ap-

plication TabetaLog by integrated two heterogeneous ser-

vices, Flickr and BodyLogService to five subjects. In this

experiment, we confirmed the efficiency of the LLCDM and

LLAPI and it seems that the effectiveness of LLCDM and

LLAPI rises further while the life log service will increase in

the future.

Our future work is to relax the limitation presented in the

previous section. After the limitations are resolved, we in-

vestigate the additional values of lifelog mashups.

Acknowledgments

This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture [Grant-

in-Aid for Scientific Research(B) (No.23300009), Young

Scientists (B) (No.21700077), Research Activity Start-up

(No.22800042)], and Hyogo Science and Technology Asso-

ciation.

References
[1] Trend Watching .com, “Life caching – an emerging con-

sumer trend and related new business ideas”. http://

trendwatching.com/trends/LIFE CACHING.htm.

[2] Twitter, Inc., “twitter”. http://twitter.com/.

[3] Yahoo, “Flickr”. http://www.flickr.com/.

[4] K. Kitamura, T. Yamasaki, and K. Aizawa, “Foodlog: Cap-

ture, analysis and retrieval of personal food images via

web,” CEA ’09: Proceedings of the ACM multimedia 2009

workshop on Multimedia for cooking and eating activities,

pp.23–30, ACM, New York, NY, USA, 2009.

[5] Garmin Ltd., “Garmin”. http://connect.garmin.com/.

[6] A. Shimojo, S. Kamada, S. Matsumoto, and M.

Nakamura, “On integrating heterogeneous lifelog ser-

vices,” Proceedings of the 12th International Conference

on Information Integration and Web-based Applications

&#38; Services, pp.263–272, iiWAS ’10, ACM, 2010.

http://doi.acm.org/10.1145/1967486.1967529

[7] S. Akira, M. Shinsuke, and N. Masahide, “Implement-

ing database and web services for life-log mashup apis [in

japanese],” IEICE technical report, vol.110, no.282, pp.101–

106, 2010-11-10. http://ci.nii.ac.jp/naid/110008153938/en/

[8] NTT Resonant Inc., “karadalog”. http://karada.goo.ne.

jp/.

— 6 —


