
Application Framework for Efficient Development of
Sensor as a Service for Home Network System

Masahide Nakamura1, Shuhei Matsuo1, Shinsuke Matsumoto1, Hiroyuki Sakamoto1 and Hiroshi Igaki2
1 Graduate School of System Informatics, Kobe University, JAPAN

2 Tokyo University of Technology, JAPAN
Email: masa-n@cs.kobe-u.ac.jp

Abstract—The sensor as a service is an emerging application
of the services computing. However, how to implement such
sensor services efficiently and reliably is an open issue. This
paper presents an application framework, called Sensor Service
Framework (SSF), that supports developers to build and deploy
sensor services in the home network system (HNS). The SSF
prescribes device-neutral features and APIs for the sensor
devices to be deployed as Web services. Writing a small amount
of code with the SSF, the developer can easily deploy any sensor
device as a service in the HNS. The sensor service can provide a
standardized access to heterogeneous sensor devices, as well as
a context management service with user-defined conditions. We
then present a sensor mashup platform (SMuP), which allows
the dynamic composition of the existing sensor services. To
support non-expert developers, we also implemented a GUI
front-end, called Sensor Service Binder (SSB). The proposed
technologies are implemented and evaluated in an actual HNS
to demonstlate practical feasibility.

Keywords-home network system, service-oriented architec-
ture, context-aware services, application framework

I. INTRODUCTION

Research and development of the home network system
(HNS, for short) is recently a hot topic in the area of
ubiquitous computing applications. Orchestrating house-hold
appliances (e.g., TVs, DVDs, speakers, air-conditioners,
lights, curtains, windows, etc.) via network, the HNS pro-
vides value-added services for home users.

Applying the service-oriented architecture (SOA) to the
HNS is a smart solution to achieve the programmatic inter-
operability among heterogeneous and distributed appliances.
Wrapping proprietary control protocols by Web services
achieves loose-coupling and platform-independent access
methods for external users and software agents. Several
studies have been reported on the service orientation of home
appliances (e.g., [1][2]). We have also been developing a
service-oriented HNS, called CS27-HNS, using legacy home
appliances [3]. The CS27-HNS is still evolving with new
applications developped, such as smart remote controllers,
voice controls, integrated services, an energy visualization
system [4], a feature interaction manager [5].

Our next challenge is to deploy sensor devices in the HNS,
in order to achieve sophisticated context-aware services [6].
Indeed, it is not difficult to develop proprietary applications,

where sensors and appliances are tightly coupled. However,
this approach lacks reusability and interoperability of sen-
sors, which ruins the advantage of the service-oriented HNS.

A smarter approach is to apply the SOA to the sensors
as well, namely, sensor as a service [7][8]. Many studies
have been conducted related to the service orientation of the
sensors and context-aware services (e.g., [9][10][11][12]).
However, most existing methods emphasized features bene-
ficial to service consumers only, such as service discovery,
composition, and context reasoning. They often abstracted
detailed implementation of the elementary sensor services.
In reality, however, adapting a given sensor device to the
SOA is not a trivial problem. Thus, how to implement good
sensor services efficiently is not fully studied yet.

In this paper, we propose a practical application frame-
work, called Sensor Service Framework (SSF), to facilitate
the implementation of the sensor as a service, especially for
the service-oriented HNS. The SSF prescribes device-neutral
APIs of the sensor devices to be deployed as Web services.
From every sensor service, a client can obtain a normalized
sensor value via getValue() method, regardless of the
type of the sensor device. The SSF also implements a context
management service. Using register() method, a client
first registers a condition of a context to a sensor service. The
sensor service periodically monitors the registered context,
and notifies the client when the condition becomes true.
Using subscribe() method, the client can bind the
notification to any Web service in the HNS, which allows
rapid creation of a user-defined context-aware service.

To extend the advantage of the SSF, we then propose the
sensor mashup platform (SMuP), enabling the composition
as a service [13] within the SSF. Using the SMuP, one can
dynamically create virtual composite sensor services from
the existing sensor services. We also develop a GUI front-
end of the SSF, called Sensor Service Binder (SSB), to help
non-expert users create own context-aware services.

We have implemented the proposed SSF by Java, and
developed 16 kinds of sensor services using the SSF and
Phidgets sensor devices [14]. These sensor services have
been deployed in our CS27-HNS by Apache Axis2 Web
services. The proposed methods are evaluated from practical
feasiblity and validity of the approach.

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.18

576

Home Server (GW)

Apps

Service
Layer

Air-Conditoner Service

setTemp()

setTimer()

power()
Service
Layer

Air-Conditoner Service

setTemp()

setTimer()

power()

Service
Layer

TV Service
channel()

volume()

input()

Service
Layer

TV Service
channel()

volume()

input()

Service
Layer

Light Service

off()

adjust()

on()
Service
Layer

Light Service

off()

adjust()

on()

Appliance Services

WSDL

WSDL

WSDL

Service
Layer

Service
Layer

Light Sensor Service
getValue()

register()

subscribe()

Service
Layer

Temp.Sensor Service
getValue()

register()

subscribe()

Service
Layer

Service
Layer

Temp.Sensor Service
getValue()

register()

subscribe()

Service
Layer

Motion Sensor Service
getValue()

register()

subscribe()

Service
Layer

Service
Layer

Motion Sensor Service
getValue()

register()

subscribe()

Sensor Services

WSDL

WSDL

WSDL

REST / SOAP

External Network

(a) Architecture

(b) Experimental Room

(c) Control Panel

(Scope of this paper)

Figure 1. Service-Oriented Home Network System, CS27-HNS

II. PRELIMINARIES

A. CS27-HNS: Service-Oriented Home Network System

We have been developing a service-oriented HNS, called
CS27-HNS, using actual home appliances [3]. As shown in
Figure 1(a), the CS27-HNS consists of appliance services,
sensor services, and a home server that manages and con-
trols the services. Every device is abstracted as a service,
where features of the device are exhibited as Web services,
encapsulating a device-proprietary protocol under the service
layer. These services are deployed in our experimental room
(Figure 1(b)). A user can control the services with various
user interfaces, such as a control panel (Figure 1(c)).

Each appliance service has a set of methods (Web-APIs)
that operate vendor-neutral features of the appliances. These
methods can be executed by external applications (usually
installed in the home server) using standard Web service
protocols (i.e., REST or SOAP). For example, a TV service
has methods for selecting channels, volume, input sources,
etc., which are commonly included in any kinds of TVs. To
select channel No.4 of the TV, one can just access a URL
http://cs27-hns/TVService/channel?no=4
with a Web-supported application (e.g., Web browser). The
framework for developing the appliance services has been
already reported in our previous research [3].

On the other hand, the sensor services in Figure 1(a) are
our new challenge and the main scope of this paper. By
our design, every sensor service in the CS27-HNS will have
the same set of Web-APIs. The method getValue() is for
retrieving the current normalized value of the sensor reading.

Other methods register() and subscribe() are for
the context-aware services in the HNS. The details of the
APIs will be presented in Section III.

B. Context-Aware Services in HNS

By introducing sensors in the HNS, it is possible to gather
various contexts [6] of the environment. We assume that
every sensor has a single property, which is a variable storing
the current value measured by the sensor. 1 A context can be
defined as a condition over the sensor property. A context
can be used for triggering the appliance services, which
implements a context-aware service in the HNS.

For example, suppose that a temperature sensor t has a
property temperature. One may define a context Hot by
a condition “the room temperature is 28◦C or greater”, de-
noted by [Hot: t.temperature>=28]. Then, binding
Hot to an API AirConditioner.cooling() achieves
a context-aware air-conditioning service.

In the conventional HNS, such context-aware services
have been implemented as proprietary applications, where
the sensors and appliances were tightly coupled. In the above
example, the air conditioner and its dedicated temperature
sensor were controlled by a proprietary program logic. It was
basically impossible to replace the sensor with a different
one, or to reuse the sensor with other appliances.

The sensor-as-a-service concept [7][8] can de-couple the
sensors from the appliances, which improves flexibility and

1There may exist a sophisticated sensor that can measure multiple
properties at a time. In such a case, we virtually divide the sensor into
pieces, each of which forms a sensor with a single property.

577

reusability of the sensor devices. However, no systematic
method for adapting a given sensor device to the SOA has
been proposed, as far as we know. Thus, the features of
the sensor services vary from project to project, even within
the domain of the HNS. These facts impose considerable
development effort of the sensor services.

C. Research Goal and Approach

Our research goal is to reduce the development effort
of the sensor services, especially within the context of the
HNS. To achieve the goal, we develop the following three
technologies in this paper.

• Sensor Service Framework (SSF): supports develop-
ers to adapt sensor devices to the SOA.

• Sensor Mashup Platform (SMuP): allows dynamic
composition of the existing sensor services.

• Sensor Service Binder (SSB): helps non-expert devel-
opers create context-aware services within the HNS.

III. SENSOR SERVICE FRAMEWORK: APPLICATION

FRAMEWORK FOR SENSOR-AS-A-SERVICE

A. Sensor Service Framework (SSF)

The key idea to reduce the development effort is to
identify “typical tasks” requested for all kinds of sensor
devices, and to delegate the tasks to a common framework.
The framework is called the sensor service framework (SSF).

Regardless of the type of sensors, a sensor in the HNS
is typically used either to retrieve environmental data, or to
check pre-defined contexts. To support these typical tasks,
the proposed SSF prescribes the following two services for
every sensor device.

• Normalized Polling Service: returns the current value
of the sensor property in a device-neutral form.

• Context Management Service: monitors registered
contexts, and publishes an event notification.

B. Normalized Polling Service

The polling service allows client applications to actively
retrieve the data from the sensor device. Our SSF prescribes
getValue() method as an API of the polling service.

In general, a sensor device produces raw data that re-
quires device-specific interpretation. Two different types of
temperature sensors produce different raw data as sensor
readings. For each device, there exists a method (often given
as a formula) that normalizes the raw data into a meaningful
property. For example, Phidgets temperature sensor (#1124
- Precision Temperature Sensor) [14] has a formula that
normalizes a sensor value to a temperature in Celsius.

Temperature=(SensorValue x 0.2222)-61.111

Preferably, such device-specific normalization should be
encapsulated under the sensor service, so that the client can
use the data without deep insight of the device. Thus, we
want the “normalized” polling service.

Motion Sensor
Device

read

normalize spec.

Motion Sensor
Service

getValue()

608608

truetrue

Client Application

Temperature Sensor
Device

read

normalize spec.

Temperature Sensor
Service

getValue()

402402

28C28C

Service
Layer

Device
Layer

28C28C truetrue

Figure 2. Normalized Polling Service of the SSF

To achieve the normalized polling service, the SSF speci-
fies the sensor service by two layers: the device layer and the
service layer. The device layer involves the device-specific
methods to read the raw data and to normalize the data. On
the other hand, the service layer provides the device-neutral
method getValue(), which returns the normalized sensor
data. The service layer is supposed to be exhibited as a Web
service, to achieve the platform-independent access.

Figure 2 shows the normalized polling services of two
sensor devices. The left side shows an example of a temper-
ature sensor. When getValue() is executed, the device
layer reads the current sensor value 402 from the device.
The data is then normalized into 28◦C, and delivered to
the service layer. Finally, the service layer returns 28◦C as
the return value of getValue(). The right side shows an
example of a motion sensor. In this example, the analog
value of the motion sensor is normalized into a Boolean
value, where true and false represent that a motion is
detected or not, respectively.

As supplementary information, the SSF allows the device
layer to involve the specification of the sensor, describing
[sensor id, sensor type, property name, unit, data type, data
range, location, description]. The specification is meta-data
that helps the clients understand the sensor data, and is ob-
tained by getSpecification() method. For example,
a specification of a temperature sensor is like

[tempSensor001, Temperature, temperature,
celcius, int, [-30..80], "living room",
"Phidgets 1124 Precision Temperature"]

C. Context Management Service

In the HNS, a sensor is typically used for checking a
context, which is defined by a condition over the sensor
property. In many applications, such contexts have been
managed in the client side. For instance, recall the context
[Hot: t.temperature >= 28] in Section II-B. In
the conventional approach, the client periodically polls the

578

Client Application

Temperature Sensor
Device

read

normalize spec.

Temperature Sensor
Service

subscribe()

402

28C

Temperature Sensor
Device

read

normalize spec.

Temperature Sensor
Service

subscribe()

402402

28C28C

register()

Registered Contexts

context: condition

“Cold”: temperature < 5C
“Hot” : temperature >= 28C
:

Registered Contexts

context: condition

“Cold”: temperature < 5C
“Hot” : temperature >= 28C
:

Context DB

1. Register “Hot” as
temp. >= 28C

2. Tell me
when “Hot“.

notify()
3. “Hot“ is
true.

Figure 3. Context Management Service of the SSF

temperature sensor t via getValue(), and evaluates the
condition of Hot. Since the same kind of context evaluation
is repeatedly done in many applications, this approach
increases not only the traffic between the sensor and the
clients, but also the complexity of the clients,

Our SSF delegates the task of the context management to
the sensor service. Figure 3 shows an example where a client
application delegates the management of Hot to a tempera-
ture sensor service. The client first registers the context using
register() method. The context is given by its name and
a condition. The context name is a unique label identifying
the context, whereas the condition is an expression com-
posed of a sensor property and comparison operators (==
!= > < >= <=). Then, using subscribe() method,
the client tells the service a callback address to be notified
when the context is satisfied. The callback address can be
given as a URL of any Web service. The service keeps
monitoring the sensor value. When any registered context
becomes true, the service invokes the corresponding Web
service. Note that for a single sensor service, different clients
can register own contexts, and that any registered context can
be reused by multiple clients.

The SSF also prescribes other supplementary methods,
including getRegisteredContexts() to obtain regis-
tered contexts, getSubscriptions() to list the current
subscriptions, pause() and resume() to pause and re-
sume a given subscription.

D. Implementing Sensor Services with SSF

We have implemented the proposed SSF as a Java class
library. Figure 4 shows an UML class diagram of the library
(only the essential portions are shown).

The SSF specifies classes in the right-hand side of the
figure. The classes are divided into the device and ser-
vice layers. The device layer contains an abstract class,
SensorDevice, specifying the three methods described
in Section III-B. These methods are supposed to be imple-

mented in each concrete sensor class. A sensor device has
a Specification storing the meta-data of the device.

In the service layer, SensorService has a sen-
sor device from which a normalized sensor value is
obtained (via getValue()). Upon the execution of
register() and susbscribe(), the sensor service
creates a Context and a Subscription, respectively.
A ContextMonitor periodically evaluate the registered
contexts, and notifies the corresponding clients when a
context becomes true.

The left side of Figure 4 shows classes for concrete
sensor services and devices, which are to be implemented
by developers themselves. For a given sensor device, a
developer has to create two new classes: a concrete sensor
class and a concrete service class. The concrete sensor
class must implement SensorDevice of the SSF, using
the device-specific operations. Individual sensor vendors
typically distribute manuals and/or SDK, providing sufficient
knowledge of how to read and interpret the sensor value in
a program. Using the information, the developer writes code
for read() and normalize() methods.

Implementing the concrete service class is simple. The
developer writes code so that the service class extends
SensorService of the SSF, and wraps a concrete sensor
object via device attribute of SensorService. Then,
the developer deploys the service class as a Web service
using a preferred middleware such as Apache Axis.

We have observed in many practical cases that the
development effort for creating the above two classes
was quite small. For instance, our implementation of
TemperatureSensor with Phidgets #1124 device com-
prises just 43 lines of Java code, and Temperature
SensorService does only 17 lines of code. A average-
trained student could program them less than one hour. More
detailed evaluation will be conducted in Section VI.

E. Using Sensor as a Service in HNS

Here we give example scenarios of using a sensor service.
Suppose that we have TemperatureSensorService
deployed as a REST Web service. To obtain the current
temperature, a client just invokes the following URL.

http://hns/TemperatureSensorService/getValue

Let us see how the context-aware air-conditioning service
in Section II-B can be implemented easily. The service can
be created by the following sequence of REST invocations.

(1) Register a context [Hot:temperature>=28].

http://hns/TemperatureSensorService/register?
context=Hot&condition=’temperature>=28’

(2) Bind Hot to AirConditioner.cooling().

http://hns/TemperatureSensorService/subscribe?
context=Hot¬ify=’http://hns/AirConditioner
Service/cooling’

579

read()
normalize()
+ getValue()

SensorDevice

read()
normalize()
+ getValue()

TemperatureSensor

read()
normalize()
+ getValue()

MotionSensor

device

+ subscribe()
+ register()
+ getValue()

SensorService

1

1

MotionSensorService

TemperatureSensorService
- condition
- name

Context

- adddressNotified
- context

Subscription

+ notifyClients()
+ evaluateContext()

<<TimerTask>>
ContextMonitor

1..*1

1

1

0..*1

creates

0..*1

creates

0..*

1

checks

0..*

1
notifies

reads

1

1

wraps
1

1
wraps

1

1

- description
- location
- dataRange
- dataType
- unit
- propertyName
- sensorType
- id

Specification

Sensor Service FrameworkConcrete Sensor Services / Devices

service layer

device layer

service layer

device layer

Figure 4. UML Class Diagram of Sensor Service Framework

IV. SENSOR MASHUP PLATFORM: COMPOSITION

PLATFORM FOR SENSOR-AS-A-SERVICE

A. Sensor Mashup Platform (SMuP)

We propose the sensor mashup platform (SMuP), adding
the “composition-as-a-service” concept [13] to the SSF.

Basically, a sensor service with the SSF can manage sim-
ple contexts over a single sensor property. For example, the
temperature sensor service in Figure 3 can manage Hot and
Cold which are defined over the property temperature.

However, using multiple sensor services together produces
a valuable property characterizing more sophisticated con-
texts. For example, using the temperature sensor together
with a humidity sensor, we can compute the discomfort index
(DI) [15], characterizing comfortability of air-conditioning.
Another example is that using two different light sensors can
measure the average brightness level of the room.

The SMuP allows the developers the sensor mashup,
which dynamically creates such composite sensors from the
existing sensor services.

B. Creating Composite Sensor Services with SMuP

Unlike the SSF, the SMuP is a Web service already
deployed in the HNS, on which the developers can create
virtual composite sensors online. We use the term “virtual”
to refer to a sensor that does not contain an actual sensor
device. Instead, the sensor property is derived from other
sensor services, not from the sensor device. For this, the
SMuP provides three APIs: importSensorService(),
createSensor(), addProperty().

The method importSensorService() takes two pa-
rameters: an URL of the sensor service and a reference label.
This method makes an existing sensor service available

within the SMuP, and the imported service can be referred
by the specified label. The method createSensor()
creates a new virtual sensor in the SMuP, by taking a sensor
name as a parameter. The method addProperty() takes
three parameters: a sensor name, a property name and a
formula. The method defines a new property as a formula
over the reference labels, and adds the property to the virtual
sensor. In the formula, arithmetic operators (+ - * / %),
comparison operators (== != > < >= <=) and logical
operators (&& || !) can be used to mash up the properties.

Figure 5 illustrates a workflow of creating a new sen-
sor service, DiscomfortIndexSensorService from
two existing services TemperatureSensorService
and HumiditySensorService. The workflow consists
of three steps, where the discomfort index (DI) is computed
from a temperature (t) and humidity (h) as follows:

DI := 0.81*t + 0.01*h*(0.99*t-14.3) + 46.3

(Step 1) The client application imports the temperature and
humidity sensor services with labels t and h, respectively,
using importSensorService().
(Step 2) The client executes createSensor() to create
the discomfort index sensor.
(Step 3) The client executes addProperty() to add
property DI with the above formula, to the created sensor.

Similarly, one can easily create the average brightness
sensor service using two different light sensors, as shown
in the right side of Figure 5.

C. Using Composite Sensors Created by SMuP

Since every virtual sensor created by the SMuP conforms
to the SSF, the sensor can be used analogous to the ordi-
nary sensor services. That is, the methods getValue(),

580

Client Application

createSensor ()importSensorService ()

Light Sensor
Service 02

getValue()
Light Sensor
Service 02

getValue()
Light Sensor
Service 01

getValue()
Light Sensor
Service 01

getValue()
Temperature

Sensor Service

getValue()
Temperature

Sensor Service

getValue()
Humidity

Sensor Service

getValue()
Humidity

Sensor Service

getValue()

t
temperature

t
temperature

b2
brightness

b2
brightness

h
humidity

h
humidity

SMuP

Average Brightness
Sensor Service

avg_brightness :=
(b1 + b2) / 2

getValue() register() subscribe()

Average Brightness
Sensor Service

avg_brightness :=
(b1 + b2) / 2

getValue() register() subscribe()

DI:= 0.81* t + 0.01*h*(0.99*t
–14.3) + 46.3

Discomfort Index
Sensor Service

getValue() register() subscribe()

DI:= 0.81* t + 0.01*h*(0.99*t
–14.3) + 46.3

Discomfort Index
Sensor Service

getValue() register() subscribe()

Existing Sensor Services1. import

1. Import Temperature as “t”
Import Humidity as “h”

2. Create “Discomfort
Index Sensor”

b1
brightness

b1
brightness

2. create

addProperty ()

3. Add a property
“DI := 0.81*t+0.01*h* (0.99*t-

14.3)+46.3)”

3. add
property

Figure 5. Creating Composite Sensor Services with the SMuP

register() and subscribe() can be used in each
virtual sensor. When a client executes getValue() for
a virtual sensor, the virtual sensor first obtains the current
values of the “child” sensor services. Based on the values,
the formula is evaluated as a return value of the API.

For example, suppose that a client executes getValue
() of the discomfort index sensor in Figure 5. The sensor
first obtains values of t and h from the temperature and
humidity sensor services, respectively. Suppose that t=24
(◦C) and h=35 (%) are obtained. Then, the formula of DI
is evaluated and the value 69.051 is returned.

Also, one can register the context to the virtual sensor.
For example, according to the statistics [15], people feel
the air-conditioning is comfortable when DI is between 65
and 70. So, we can register the context [comfortable:
65<=DI && DI<70] to the discomfort index sensor via
register(). Then, any client can bind the context to
an HNS operation by subscribe(). The sensor service
keeps monitoring comfortable, and notifies the corre-
sponding addresses when the context becomes true.

V. SENSOR SERVICE BINDER: USER-FRIENDLY

INTERFACE FOR CONTEXT-AWARE SERVICE CREATION

A. Sensor Service Binder (SSB)

The proposed SSF and SMuP facilitates the development
of sensor services in the HNS. However, it is yet challenging
for non-expert users to create the context-aware services
using the sensor services. To cope with this problem, we
have developed a novel service creation environment, called
Sensor Service Binder (SSB), in our CS27-HNS.

The SSB provides a graphical user interface for rapid
creation of context-aware services, which acts as a front-end
of the SSF. The SSB automatically parses the WSDL of the
sensor/appliance services within the HNS. It then displays
the information in an intuitive and user-friendly form. The

user can play with the services through basic widgets such
as buttons, lists and textboxes. Since the SSB requires no
expertise of Web services, it can minimize the careless faults
in operating the sensor services. Also, the SSB can list all
contexts and callback APIs registered in all sensor services.
This allows users to overlook the entire list of available
contexts and corresponding services.

The SSB provides the following two primary features
supporting end-users.

• (Context Registration Feature) Register a user-
defined context by executing register() method of
the sensor service.

• (Context Subscription Feature) Bind a registered
context to a Web-API of an HNS appliance using
subscribe() method.

B. Context Registration Feature of SSB

Figure 6(a) shows a screenshot of the registration feature.
The left side of the screen is the registration pane. A user first
chooses a desired sensor service from the drop-down list,
and then enters a context name in the textbox. In the below
of the textbox, a sensor property is automatically shown.
The user defines a context condition by an expression over
the property. In the default mode, the SSB allows only a
constant value and a comparison operator. Finally, the user
presses the “Register” button. The SSB registers the context
to the service by invoking register() method.

The right side of the screen represents a list of contexts
that were already registered. The list is dynamically created
by getRegisteredContexts() method of the SSF.
Each line contains a context name, a context condition and
a sensor service where the context is registered. The user
can check if the created context is registered. The user can
also discard unnecessary contexts by just pressing “Delete”
button. The SSB requests the service to delete the context.

C. Context Subscription Feature of SSB

This feature helps a user bind a registered context to a
Web-API of the appliance operation. Figure 6(b) shows a
screenshot of the context subscription feature. The left side
of the screen enumerates the registered contexts, each of
which is labeled by the context name. When a user clicks a
preferred context, the context is chosen for the binding.

The right side of the screen shows the list of appliance
services deployed in the HNS. When a user clicks a preferred
appliance, a menu of operations of the appliance is popped
up. Then the user chooses an operation to bind. The list
of appliances and the menu of operations are automatically
generated by parsing the WSDL of the appliance services.

Finally, when the user clicks “Bind” button in the
center, the SSB subscribes the binding by executing
subscribe() method. This completes a service creation.
The subscribed contexts are shown in the textbox in the
center, where the user can delete any binding.

581

(a) Context Registration (b) Context Subscription

Figure 6. Screenshots of Sensor Service Binder

VI. EVALUATION

A. Practical Feasibility

Using the SSF, we implemented 16 sensor services, and
deployed them in the CS27-HNS with Apache Axis2. As
summarized in Table I, most sensor services wraped Phid-
gets devices. The total lines of code (LOC) for adapting
Phidgets #1114 temperature sensor was just 65. Implement-
ing the same temperature sensor service without the SSF
comprised 4,004 LOC. Thus, we can see how the SSF can
reduce the development effort, significantly.

The SSF was well applied to not only Phidgets sensors
but also other devices like Panasonic Lifinity and Weather
Goose. More importantly, the SSF could be used to wrap the
weather news as a sensor service. As long as the developer
can implement read() and normalize() methods, the
SSF can adapt any data source, not limited to a sensor
device. Thus, the SSF can be applied to a wide range of
applications, such as a database, the appliance status and
information resources on the Web (news, stock, blog).

Although the SSF supports only two primitive services
(see Section III), the services were enough to implement
many practical context-aware services in the CS27-HNS.
They include the air-conditioning with the discomfort index,
the automatic light control, the energy peak control, the all
shutdown when leaving, the couch potato prevention, etc.

We have also conducted an experiment of creating
context-aware services using the 16 sensor services and the
SSB. The total 6 subjects participated in the experiment.
None of the subjects was familiar with the HNS or the SSF.
Using the SSB, each subject performed the registration of 5
contexts (Task T1), and the subscription of 5 services (Task
T2). It was shown that the average time taken for Tasks T1
and T2 are 76 seconds and 74 seconds, respectively. This
result indicates the efficiency of the SSB and SSF in that
non-expert developers could build the context-aware services

from scratch, within just a few minutes.

B. Validity of Approach

One may doubt the validity of our approach wrapping
a sensor with the expensive Web service. Indeed, many
existing studies on the sensor networks often assume envi-
ronments with severe requirements on power, size, network
connectivity, mobility, scalability, etc. Compared to those,
the HNS is a physically mild environment, since the sensor
devices are fixed on the house where the power and the
network are guaranteed. Thus, in the domain of the HNS,
we put more weight on the reliability and interoperability,
which justifies the sensor-as-a-service approach.

C. Related Work

Several studies on the service-oriented middleware for
the sensors and context-aware applications have been re-
ported, for example, SOCAM [10], Sens-ation [11], Atlas
[12]. These middleware systems give much weight to high-
level context management, such as context interpretation,
reasoning, discovery, etc. However, they do not give the
details of how to adapt the physical sensors to the middle-
ware. Therefore, our SSF can be used to complement these
middleware systems, in implementing the concrete device
adapter as sensor service.

Concerning the proposed SSB, there are studies for the
user interface for building the context-aware services. Sheng
et al. [9] presented a graphical user interface for model-
ing context-aware application using UML. Dey et al. [16]
presented aCAPpella, where a user can program contexts
by demonstration. Compared to these methods, our SSB
provides a less-expressive but light-weight approach for non-
expert users, limiting the contexts to the ones managed by
the SSF. Thus, in exchange for the limitation, the users can
easily perform “scrap and build” of context-aware services
within a couple of minutes.

582

Table I
DEVELOPED SENSOR SERVICES IN CS27-HNS

Sensor Service LOC Wrapped Device or Data Source
Temperature 65 Phidgets #1114
Humidity 87 Phidgets #1107
Light 60 Phidgets #1105
Force 67 Phidgets #1106
GasPressure 65 Phidgets #1126
Sound 68 Phidgets #1133
Motion 84 Phidgets #1111
Rotation 74 Phidgets #1109
Contact 74 Phidgets #3560
OutHumidity 65 Phidgets #1125
OutLight 65 Phidgets #1127
OutTemperature 60 Phidgets #1124
PeopleCounter 90 Phidgets #1023 RFID + Custom WS
PowerConsumption 71 Panasonic Lifinity
WeatherGoose 148 Weather Goose II
WeatherNews 141 Livedoor Weather Hack RSS

VII. CONCLUSION

To facilitate the development of “sensor as a service” in
the home network system (HNS), we have proposed three
novel technologies in this paper: (1) Sensor Service Frame-
work (SSF): application framework supporting developers
to adapt sensor devices to the SOA, (2) Sensor Mashup
Platform (SMuP): platform for dynamic composition of
the sensor services, and (3) Sensor Service Binder (SSB):
user-friendly interface helping non-expert developers create
context-aware services within the HNS. These technologies
have been implemented on an actual home network, CS27-
HNS, to demonstrate the practical feasibility.

As for the future work, we are currently extending the
SMuP to be able to manage timing constraints among
contexts. We are also implementing several extensions of
the SSB. One is the discovery feature, with which users can
search sensors and appliances by name, location, purpose,
etc. Another issue is to share and reuse the existing contexts,
facilitating the context creation and registration.

ACKNOWLEDGMENT

This research was partially supported by the Japan Min-
istry of Education, Science, Sports, and Culture, Grant-in-
Aid for Young Scientists (B) (No.21700077) and Research
Activity Start-up (No.22800042).

REFERENCES

[1] C. L. Wu, C. F. Liao, and L. C. Fu, “Service-oriented smart
home architecture based on osgi and mobile agent technol-
ogy,” in IEEE Trans. on Systems, Man, and Cybernetics
(SMC), Part C, vol. 37, no. 2, 2007, pp. 193–205.

[2] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and
C. Marin, “A dynamic-soa home control gateway,” in Proc.
the 3rd IEEE International Conference on Services Comput-
ing (SCC), 2006, pp. 463–470.

[3] M. Nakamura, A. Tanaka, H. Igaki, and K. Matsumoto,
“Constructing home network systems and integrated services
using legacy home appliances and web services,” Int’l J. of
Web Services Research, vol. 5, no. 1, pp. 82–98, 2008.

[4] H. Igaki, H. Seto, M. Fukuda, and M. Nakamura, “Mashing
up multiple logs in home network system for promoting
energy-saving behavior,” in Proc. of 8th Asia-Pacific Sym-
posium on Information and Telecommunication Technologies
(APSITT2010), vol. CDROM, June 2010.

[5] M. Nakamura, H. Igaki, Y. Yoshimura, and K. Ikegami, “Con-
sidering online feature interaction detection and resolution
for integrated services in home network system,” in the 10th
Int’l Conf. on Feature Interactions in Telecommunications and
Software Systems (ICFI2009), 2009, pp. 191 – 206.

[6] A. K. Dey and G. D. Abowd, “Towards a better understanding
of context and context-awareness,” in Proc. the 1st Interna-
tional Symposium on Handheld and Ubiquitous Computing
(HUC), 1999, pp. 304–307.

[7] M. G. Lozano, P. Horling, F. Moradi, and E. Tjornhammar,
“Supporting c2 with a service oriented framework for oppor-
tunistic sensors and sensor networks,” in Proc. International
Command and Control Research and Technology Symposium
(ICCRTS2009), 2009.

[8] S. Alam, M. M. R. Chowdhury, and J. N. Muhl, “Senaas:
An event-driven sensor virtualization approach for inter-
net of things cloud,” in Proc. International Conference on
Networked Embedded Systems for Enterprise Applications
(NESEA2010), 2010, pp. 1–6.

[9] Q. Z. Sheng, S. Pohlenz, J. Yu, H. S. Wong, A. H. Ngu, and
Z. Maamar, “Contextserv: A platform for rapid and flexible
development of context-aware web services,” Proc. the 31st
International Conference on Software Engineering (ICSE),
pp. 619 – 622, 2009.

[10] T. Gua, H. K. Punga, and D. Q. Zhang, “A service-oriented
middleware for building context-aware services,” Journal of
Network and Computer Applications, vol. 28, pp. 1 – 18,
2005.

[11] T. Gross, T. Egla, and N. Marquardt, “Sens-ation: A service-
oriented platform for developing sensor-based infrastruc-
tures,” International Journal of Internet Protocol Technology
(IJIPT), vol. 1, no. 3, pp. 159–167, 2006.

[12] J. King, R. Bose, H. i Yang, S. Pickles, and A. Helal, “Atlas:
A service-oriented sensor platform hardware and middleware
to enable programmable pervasive spaces,” in Proc. the 31st
IEEE Conference on Local Computer Networks (LCN), 2006,
pp. 630–638.

[13] M. B. Blake, W. Tan, and F. Rosenberg, “Composition as a
service,” IEEE Internet Computing, vol. 14, no. 1, pp. 78–82,
2010.

[14] Phidgets - Products for USB Sensing and Control,
http://www.phidgets.com/.

[15] J. R. Bosen, “Discomfort index,” in Reference data section,
Air Conditioning, Heating, and Ventilating, 1959.

[16] A. K. Dey, R. Hamid, C. BeckMann, I. Li, and D. Hsu,
“a cappella: Programming by demonstration of context-aware
applications,” Proc. CHI, vol. 6, no. 1, pp. 33 – 40, 2004.

583

