
On Integrating Heterogeneous Lifelog Services

Akira SHIMOJO, Saori KAMADA, Shinsuke MATSUMOTO, Masahide NAKAMURA
Graduate School of System Informatics, Kobe University
1-1, Rokkodai-cho, Nada, Kobe, Hyogo 657-8501, Japan

{shimojo, kamada}@ws.cs.kobe-u.ac.jp, {shinsuke, masa-n}@cs.kobe-u.ac.jp

ABSTRACT
This paper presents a framework that integrates different
kinds of lifelog services. For efficient data mashup, we first
propose the lifelog common data model (LLCDM), which
normalizes data structures and formats of heterogeneous
lifelog records. We derive application-neutral data items by
an interrogative analysis of what, why, when, who, where
and how. We then implement the lifelog mashup API (LLAPI)
to achieve standardized access to heterogeneous lifelogs. A
case study of integrating practical lifelog services (Twitter,
Flickr and GARMIN Connect) demonstrates the effective-
ness of the proposed framework. It was shown that the
development effort with the proposed APIs was reduced to
11.9%, compared to the conventional mashup development
with the proprietary APIs.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-Based services; D.2.12 [Software
Engineering]: Interoperability—Data Mapping ; H.3.4 [In-
formation Storage and Retrieval]: Systems and Soft-
ware—Distributed systems

General Terms
Design, Experimentation

Keywords
lifelog, data integration, common data model, mashup API,
Web services

1. INTRODUCTION
Lifelog (also known as life caching) is a social act to record

and share human life events in an open and public form [14].
It is expected to be one of most promising applications in
the ubiquitous society. The long-term logging would help a
user to recall and improve daily life, as well as to recognize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2010, 8-10 November, 2010, Paris, France.
Copyright 2010 ACM 978-1-4503-0421-4/10/11 ...$10.00.

behaviors the user was never aware of. It might also be used
for decision making and personal service recommendation.

Due to recent progress on storage and network technolo-
gies, a variety of lifelog services appear in the Internet. Using
these services, we can easily store, publish and share various
types of lifelogs on the Web. Popular lifelog services include;
blog for writing diary, Twitter [15] for delivering one’s sta-
tus known as tweets, Flickr [16] for storing and sharing pic-
tures, FoodLog [5] for photographing daily meals, GARMIN
Connect [8] for managing training data with GPS, karadalog
[11] for recording body measurements (weight, fat, etc.) for
health and diet, and Nemulog [3] for logging sleeping hours.

In general, both storage and application are enclosed within
the same lifelog service. Thus, various types of lifelog records
are scattered over different service providers. Integrating
such scattered lifelogs would implement more sophisticated
and value-added services, rather than using them separately.
We call lifelog mashup to represent such integration of differ-
ent lifelog services over the Internet. As means of the lifelog
mashup, some of lifelog services are providing Web services,
APIs, blog components, etc., which allow external programs
to access the lifelog data. However, the access methods are
all different from service to service, since there is no standard
specification. Such heterogeneity poses significant effort in
developing mashup applications.

To support efficient lifelog mashup, this paper presents
the lifelog common data model (LLCDM) and the lifelog
mashup API (LLAPI). The LLCDM prescribes a generic
data schema for lifelog records, which does not rely on any
specific lifelog service. To build an application-neutral model,
we conduct an interrogative analysis, deriving data items
from viewpoints of what, why, when, who, where and how.
We then develop the LLAPI to manipulate data records con-
forming to the LLCDM. The LLAPI provide a standard way
to retrieve data from heterogeneous lifelog services.

We also conduct an experiment of developing a practi-
cal lifelog mashup, called LifeLogMaps, with and without
the proposed LLCDM/LLAPI. Integrating Twitter, Flickr
and GARMIN Connect, the LifeLogMaps overlays tweets
and pictures taken during the walking exercise on the path
trail recorded. We evaluate the proposed method from view-
points of development effort and execution performance.

2. PRELIMINARIES

2.1 Lifelog Services and Mashups
As introduced in Section 1, there are a variety of lifelog

services available in the Internet. The great success of these

Social Networks and Mashups iiWAS2010 Proceedings

261

<photo id="4270257663"

owner=“42626851@N05”

title="android Dev Phone 1"

datetaken="2010-01-13 14:14:04"

ownername=“shimojo"

lastupdate="1263530688"

....................

latitude="0" longitude="0"

media="photo"

url_s="http://farm4.static.flickr.com/3343/

4617769019_9c195d8772_m.jpg"

height_s="240"

width_s="144"

model= "RICOH CX3 "

....................

</photo> (b) Flickr photo object

<photo id="4270257663"

owner=“42626851@N05”

title="android Dev Phone 1"

datetaken="2010-01-13 14:14:04"

ownername=“shimojo"

lastupdate="1263530688"

....................

latitude="0" longitude="0"

media="photo"

url_s="http://farm4.static.flickr.com/3343/

4617769019_9c195d8772_m.jpg"

height_s="240"

width_s="144"

model= "RICOH CX3 "

....................

</photo> (b) Flickr photo object

<status>

<created_at>Sat May 22 16:31:55 +0000 2010</created_at>

<id>14503299100</id>

<text>@masa-n SATC2 was wonderful!!</text>

<source>web</source>

<in_reply_to_screen_name>masa-n</in_reply_to_screen_name>

<user>

<id>68573479</id>

<screen_name>shimojo</screen_name>

<time_zone>Osaka</time_zone>

<lang>ja</lang>

</user>

<geo />

<place />

</status>

(a) Twitter status data

<status>

<created_at>Sat May 22 16:31:55 +0000 2010</created_at>

<id>14503299100</id>

<text>@masa-n SATC2 was wonderful!!</text>

<source>web</source>

<in_reply_to_screen_name>masa-n</in_reply_to_screen_name>

<user>

<id>68573479</id>

<screen_name>shimojo</screen_name>

<time_zone>Osaka</time_zone>

<lang>ja</lang>

</user>

<geo />

<place />

</status>

(a) Twitter status data

Figure 1: Records of different lifelog services

services lies not only in information technologies, but also
in the nature of human beings, loving to collect and store
possessions, memories, experiences [14].

For these lifelog services, “what to log” is the selling point,
and it varies from service to service. End users choose fa-
vorite services depending on their purpose. In general, stor-
age and application are enclosed within the same lifelog ser-
vice. Thus, various types of lifelog records are scattered over
different service providers.

Integrating such scattered lifelogs may create more values
rather than using them separately. In this paper, we define
a term lifelog mashup to refer to such integration of differ-
ent lifelogs to create a value-added service. For example,
integrating “Twitter” and “Flickr”, we may easily create a
photo album with comments (as tweets). Also, integrating
“FoodLog” and “karadalog”, a doctor may find a symptom
of lifestyle related disease by analyzing statistics on eating
habits and body measurements.

2.2 Challenges in Lifelog Mashups
Assuming the lifelog mashup, some of the lifelog services

are providing Web services, APIs, and/or blog components,
which allow external programs to access the lifelog data.
However, there is no standard specification among such APIs
or data formats of the lifelog, which is as shown in the fol-
lowing example.

Figure 1 (a) shows a data record retrieved from Twitter,
representing that a user “shimojo” made a tweet “SATC2
was wonderful!!” to a particular user “masa-n” on May 22,

Mash-up

App.1

Mash-up

App. 3

Mash-up

App. 2

FoodLogBETA

Manage your photos of foods

Figure 2: Conventional approach of lifelog mashup

2010. Figure 1 (b) is a data record of Flickr, describing
information of a picture taken by a user “shimojo” on 2010-
01-13. We can see that data schema of the two records are
completely different. Although both are in the XML, there is
no compatibility. Note also that these records were retrieved
by different ways by using proprietary APIs.

There has been no other way but using the proprietary
APIs for creating lifelog mashups. The conventional style of
the lifelog mashup can be described as in Figure 2. We can
see, in the figure, that each mashup application is tightly
coupled with lifelog services (via proprietary APIs). Even
for making the same query, the application has to use differ-
ent methods for different services. Also different integration
logic is needed for different combination of services. Thus,
the conventional lifelog mashup tends to require great devel-
opment effort. Also, the tight coupling declines portability
and reliability of the application against the updates of the
lifelog services.

2.3 Research Goal and Approach
To overcome the limitations of the conventional mashup,

we design, implement and evaluate the lifelog common data
model (LLCDM) and the lifelog mashup API (LLAPI) in
this paper. Figure 3 shows the proposed method of the
lifelog mashup. The data stored in heterogeneous lifelog ser-
vices are transformed and aggregated in the LLCDM, which
is an application-neutral form among the lifelog services. On
top of the LLCDM, we define the LLAPI as generic inter-
face to access the data, with which mashup applications are
developed. The introduction of the LLCDM and the LLAPI
achieves loose coupling between the application and individ-
ual lifelog services, and horizontal access to heterogeneous

FoodLogBETA

Manage your photos of foods

Mash-up

App. 3

Mash-up

App. 3
Mash-up

App. 2

Mash-up

App. 2

Mash-up

App. 1

Mash-up

App. 1

Common

Data Model

Transform

Aggregate

Generic APIs

Figure 3: Proposed approach of lifelog mashup

iiWAS2010 Proceedings Social Networks and Mashups

262

Common Data Part

Proprietary Data Part

Ref. to Proprietary Schema

Common Data Schema Schema for
App1

Schema for
App2

Schema for
App3

defines
common data part

:defines
proprietary
data part

Life Log
Data

Proprietary Data Schemas

Generic APIs

is defined by

search &
retrieve

Figure 4: Architecture of lifelog common data model

lifelog data. Thus, the proposed approach will cope with the
limitations in Section 2.2.

3. LIFELOG COMMON DATA MODEL

3.1 Overview
Figure 4 shows the architecture of the proposed LLCDM.

The pillar represents a repository (i.e., database), which
stores lifelog records (appear as rounded boxes) conform-
ing to the LLCDM. Each record consists of “common” (i.e.,
application-neutral) data items and“proprietary” (i.e., appli
cation-specific) data items.

The common data items are defined and interpreted by the
generic common data schema within the LLCDM. Using the
generic schema, the LLAPI implements application-neutral
methods for operating lifelog data. On the other hand, the
proprietary data items are not interpreted within the LL-
CDM. Instead, we delegate the data definition to external
proprietary schemas, which are supposed to be prepared by
individual lifelog services. For each record, the LLCDM just
attaches a reference to the proprietary schemas.

Using this architecture, one can delegate all the data items
to the proprietary schemas. This case is, however, equivalent
to the one with the conventional proprietary APIs, and thus
there is no merit using LLCDM.

The key issue for constructing a useful model is to derive
as many common data items as possible. To achieve this, we
conduct an interrogative analysis, investigating data items
from the perspectives of what, why, who, when, where and
how. In the following sections, <tag> represents a name of
any data item.

3.2 Data items from WHAT Perspective
“What to log” varies from service to service, as discussed

in Section 2.1. For example, Twitter records tweets (tagged
by <text>), while Flickr stores pictures (<photo>). Thus,
data items corresponding to WHAT perspective are quite
application-specific. So, our LLCDM just stores the orig-
inal data as it is, without interpreting them. The data is
tagged by <content>, and its interpretation is delegated by
an external schema pointed by the reference <ref_schema>.

For a given original lifelog record, there are design choices
what data should be stored in <content> of the LLCDM. Our
choice is to store the whole original record within <content>

in order to prevent information loss.

3.3 Data items from WHY Perspective
For a given lifelog record, it is quite difficult for third

person to know exactly “why the log is taken”, unless ex-
plicitly described. From the WHY perspective, several data
items can be considered, including <purpose>, <reason>, <mo-
tivation>, etc. However, some lifelog services can explain
the purpose (e.g., recording weights and calories are for a
diet). Also, most lifelog records are taken just for fun with-
out strong reason. The reason or purpose can be derived by
sophisticated data mining techniques. So, we consider that
any data items w.r.t. WHY perspective are application-
specific and outcomes of data mining. Thus, we exclude
them from the LLCDM.

3.4 Data items from WHEN Perspective
“When the lifelog is taken” is one of the most application-

neutral attribute. Not only the lifelog, but any kinds of logs
usually record date (<date>) and time (<time>) to capture
when the event occurred.

Strictly speaking, there might be several definitions for
<date> and <time>. However, in the LLCDM we define them
as “the date and time when the event occurred”. As for the
data format, we adopt the “Universal Time, Coordinated”
(UTC) to maintain neutrality of the data. For the lifelog
services not adopting the UTC format, we need to convert
the original record in the LLCDM.

<date> Date YYYY-MM-DD (e.g., 2010-03-05)

<time> Time hh:mm:ss (e.g., 12:34:56)

3.5 Data items from WHO Perspective
The lifelog is basically records of the human beings. So

“Who caused the event” is an application-neutral attribute
that must be associated with every lifelog record. In the
LLCDM, we introduce a data item <user> to represent the
subjective user that caused the event. Moreover, for events
performed by multiple users, we propose to include <party>

to say “With whom the event was caused”, as well as <ob-

ject> to describe “For whom the event was done”. These are
generic and useful data for representing relationships among
multiple users.

As for the data format of <user>, <object> and <party>,
we use “username” (i.e., account name) used by individual
lifelog services. The username is a mandatory attribute for
lifelog services, so it is always available. Also, the username
is the a primary identity of each user. So, we decided to use
it within the LLCDM.

<user> String username (e.g., shimojo)

<party> String username (e.g., saorin)

<object> String username (e.g., masa-n)

3.6 Data items from WHERE Perspective
“Where the lifelog is taken” is also an application-neutral

attribute. For instance, the GPS coordinates directly rep-
resent where I am (was). A picture may have information
on where it was taken. Height and weight may be associate
with a place where they were measured. So, the information
of place, say <location>, can be easily associated with any
kinds of data. Hence, we include <location> in the LLCDM.

As for the data format representing <location>, we use
coordinates (latitude and longitude) as well as the street ad-
dress. The coordinates pin-points the exact location, while
the street address is intuitive for human users to query the

Social Networks and Mashups iiWAS2010 Proceedings

263

Table 1: Common data schema of LLCDM
Perspective Data Tag Data Format Description
WHAT <content> Binary original_data Contents of the log (whole original data)

<ref_schema> URL url URL references to external schema
WHY n/a n/a n/a

WHEN <date> Date YYYY-MM-DD Date when the log is created (in UTC)
<time> Time hh:mm:ss Time when the log is created (in UTC)

WHO <user> String username Subjective user of the log
<party> String username Party involved in the log
<object> String username Objective user of the log

WHERE <address> String street_address Street address where the log is created
 <latitude> Double latitude Latitude where the log is created

 <longitude> Double longitude Longitude where the log is created
HOW <application> String application Service/application by which the log is created

<device> String device Device with which the log is created

data. Consequenely, we deceded to use all of <latitude>,
<longitude> and <address> as subnodes of <location>.

<location>

<latitude> double latitude (e.g., 34.72631)

<longitude> double longitude (e.g., 135.235321)

<address> String address (e.g., 1-1 Kobe St...)

</location>

3.7 Data items from HOW Perspective
Preferably, “how the lifelog is recorded” should not de-

pend on specific lifelog services. For example, Twitter is not
only the way to record a tweet (i.e., short text). Moreover,
the same tweet can be produced from several devices (e.g.,
cell-phone, PDA, PC, etc.) Thus, basically, means and de-
vices used for the lifelog should be independent of contents
of the lifelog. In fact, however, there exist a dependency be-
tween a lifelog service and the way of lifelog recording, since
supported devices and methods are usually limited by the
service. Based on this, from HOW perspective we decided
to include <application> and <device> as the application-
neutral data items in the LLCDM. <application> represents
the name of application used for the lifelog recording. <de-

vice> is the name of device used. These data items are
attached to every lifelog record.

<application> String app_name (e.g., Flickr)

<device> String dev_name (e.g., RICOH CX3)

Table 1 summarizes all data items of the LLCDM, derived
from the interrogative analysis.

3.8 Transforming Lifelog to LLCDM
Our next interest is how to transform the original lifelog

record to fit to the LLCDM. We present a transformation
method consisting of the following three steps.

(Step 1) Defining Data Mapping
This step defines a data mapping from every data item in
the original record to the one in the LLCDM. In general,
the data schema in the original record varies from service
to service. Hence, the mapping should be defined for every
lifelog service to integrate.

(Step 2) Converting Data Format
Next, we convert the format of the original data value to
the one of the LLCDM. The conversion should be carefully
done not to change the semantics.

<lifelog id=10000002>

<date>2010-05-22</date>

<time>16:31:55</time>

<user>shimojo</user>

<party/>

<object>masa-n</object>

<location>

<latituade/>

<longitude/>

<address/>

</location>

<application>twitter</application>

<device>web</device>

<ref_schema>http://apiwiki.twitter.com/

</ref_schema>

<content> <status><created_at>.....

<text>@masa-n SATC2 was wonderful!!</text>

.....</status>

</content>

</lifelog> (a) Twitter data

<lifelog id=10000002>

<date>2010-05-22</date>

<time>16:31:55</time>

<user>shimojo</user>

<party/>

<object>masa-n</object>

<location>

<latituade/>

<longitude/>

<address/>

</location>

<application>twitter</application>

<device>web</device>

<ref_schema>http://apiwiki.twitter.com/

</ref_schema>

<content> <status><created_at>.....

<text>@masa-n SATC2 was wonderful!!</text>

.....</status>

</content>

</lifelog> (a) Twitter data

<lifelog id=20000015>

<date>2010-01-13</date>

<time>14:14:04</time>

<user>shimojo</user>

<party/>

<object/>

<location>

<latituade/>

<longitude/>

<address/>

</location>

<application>flickr</application>

<device>RICOH CX3</device>

<ref_schema>http://www.flickr.com/services/api/

</ref_schema>

<content> <photo id=“4270257663”

....................

title="android Dev Phone 1"

url_s="http://farm4.static.flickr.com/3343/

4617769019_9c195d8772_m.jpg"

....................></photo>

</content>

</lifelog> (b) Flickr data

<lifelog id=20000015>

<date>2010-01-13</date>

<time>14:14:04</time>

<user>shimojo</user>

<party/>

<object/>

<location>

<latituade/>

<longitude/>

<address/>

</location>

<application>flickr</application>

<device>RICOH CX3</device>

<ref_schema>http://www.flickr.com/services/api/

</ref_schema>

<content> <photo id=“4270257663”

....................

title="android Dev Phone 1"

url_s="http://farm4.static.flickr.com/3343/

4617769019_9c195d8772_m.jpg"

....................></photo>

</content>

</lifelog> (b) Flickr data

Figure 5: Lifelog records converted to LLCDM

(Step 3) Preserving Original Data
Finally, we copy the whole original record to <content>.
Then, we obtain a URL of the schema of the record from
the service provider, and put the URL in <ref_scheme>. This
prevents the information loss during the data transforma-
tion, and maintains the compatibility with the conventional
libraries and/or APIs provided by the lifelog services.

(Example) Converting Twitter Record to LLCDM
As an illustrative example, we here transform the data record
of Twitter in Figure 1(a). In Step 1, we define the data
mapping. The date information in <created_at> is divided
and mapped to <date> and <time>. The username shown in
<screen_name> is mapped to <user>. Also, the username ap-
pearing after “@” in<text> represents a user to be replied,
so is mapped to <party>. The source device in <source> is
mapped to <device>. The name of the service “Twitter” is
mapped to <application>.

In Step 2, we convert the format. For example, the date
“Sat May 22 16:31:55 +0000 2010” is divided and trans-
formed into “2010-05-22” and “16:31:55”. In Step 3, we copy
the whole data of <status> into <content> as it is. Then,
we specify the URL“http://apiwiki.twitter.com/” of the
Twitter-API specification in <ref_scheme>. The resultant
record is shown in Figure 5(a), which conforms to the LL-

iiWAS2010 Proceedings Social Networks and Mashups

264

CDM. Similarly, the data record of Flickr (see Figure 1) can
be transformed into the one in Figure 5(b).

4. LIFELOG MASH UP API (LLAPI)
This section presents APIs for searching and retrieving

lifelog data conforming to the LLCDM, which can be used
extensively for building lifelog mashups.

4.1 getLifeLog()
This API searches and retrieves lifelog records matching

a given query. The query is specified by the data items of
the LLCDM, i.e., <date>, <time>, <party>, <object>, <loca-

tion>, <application> and <device>. It also takes a “select”
parameter to select particular data items from the resulting
records (like SELECT statement of SQL).

Interface:

LifeLog[] getLifeLog(date, time, user, party,

object, location, application, select);

Parameters:

date: Query of <date>

time: Query of <time>

user: Query of <user>

party: Query of <party>

object: Query of <object>

location: Query of <location>

application: Query of <application>

select: List of items to be selected

Query:
An expression consisting of literals (”Quoted String”), logical
OR (’+’), and wild-card (*).

Return Value:
A list (array) of lifelog data records matching the given
query. Each record can be represented by a hashmap where
keys are data tags in Table 1.

Example:
Retrieve lifelog records of the user “shimojo.akira” that are
taken on March 1st, 2010 with “Twitter” or “Flickr”. From
the result, select data items of date, time, username, Twit-
ter’s tweet (<text>), Flickr’s URL of a picture (<url_s>) and
the title of the picture (<title>).

getLifeLog({date => "2010-03-01",

user => "shimojo.akira",

application => "Twitter+Flickr",

select => "date+time+user+text

+url_s+title"})

4.2 getLifeLogNearestTime()
The API getLifelog() is quite generic to get all lifelog

records matching the given query. However, one may want
to get the single nearest matching. We are currently sup-
porting an API for searching the nearest time record as
shown below. In the future, we plan to consider other crite-
ria such as the nearest location, the nearest user, etc.
Interface:

LifeLog getLifeLogNearestTime(date, time, user,

application);

Parameters:

date: Query of <date>

time: Query of <time>

user: Query of <user>

application: Query of <application>

Return Value:
A lifelog record taken on the nearest date and time matching
the given query.

Example:
Get a lifelog record of the user“shimojo.akira”with GARMIN
Connect, whose recorded date is nearest to 12:34:56, March
1st, 2010.

getLifeLog({date => "2010-03-01",

time => "12:34:56",

user => "shimojo.akira",

application => "GARMIN"})

5. IMPLEMENTATION

5.1 LLCDM Data Converter and LLAPI
We have implemented a set of Perl scripts that convert

lifelog data records into the LLCDM. Currently, data con-
version of Twitter, Flickr and GARMIN Connect are sup-
ported. The scripts are implemented using open-source li-
braries such as XML::Simple, Net::Twitter, Flickr::API, and
Time::Piece, and are comprised of 930 lines of code. For the
data conversion, each script first obtains the original lifelog
data using proprietary APIs provided by individual lifelog
services. Then, it converts the data into the LLCDM based
on the conversion method presented in Section 3.8. Finally,
the converted data is stored in an XML format.

Based on Section 4, we have then implemented the LLAPI
in the Perl language. The LLAPI is comprised of around 400
lines of code, and can be used as a perl library. The LLAPI
can be also deployed as a REST Web service to increase
programmatic interoperability.

5.2 Providing Proposed Method as Service
In providing the proposed LLCDM and LLAPI as public

services (see Figures 3 and 4), there are two options: offline
mode and online mode. The offline mode uses scheduled
batch processes to (1) gather all available lifelog records from
various services, (2) convert the records into the LLCDM,
and (3) store the converted records in the repository. When
a request comes through the LLAPI, the system searches and
retrieves the already-converted records. The offline mode
can provide light-weight access for the LLAPI, as the data
conversion has been done. The drawback is that the latest
data is not necessarily available in the repository.

On the other hand, the online mode performs the on-the-
fly data gathering and conversion when the request arrives.
The online mode can access the latest lifelog data and can
save storage space. However, it poses huge overhead in the
LLAPI. Since both modes have own advantage and draw-
back, they should be chosen according to characteristics of
the mashup applications to be developed. Our current im-
plementation supports the offline mode only. The online
mode will be implemented in our future work.

Social Networks and Mashups iiWAS2010 Proceedings

265

6. EVALUATION

6.1 Building a Mashup Application
In this section, we conduct an experiment of developing

a practical lifelog mashup application, called LifeLogMaps,
by integrating three heterogeneous services: Twitter, Flickr
and GARMIN Connect. To evaluate the effectiveness of the
proposed method, the application is developed in two ways:
one process with the conventional APIs, and another process
with the proposed LLCDM and LLAPI.

LifeLogMaps
LifeLogMaps is an application supporting walking exercise,
which overlays short text, pictures and walking trails (GPS)
recorded during the exercise onto a single map of Google
Maps. LifeLogMaps obtains the three kinds of data from
Twitter, Flickr and GARMIN Connect, respectively, and
integrates the data according to date and time.

A user takes for a walking exercise with a GARMIN GPS
receiver, a digital camera and hand-held device (PDA, cell
phone, etc). During the exercise, the user writes short text
coming to mind using Twitter, and takes pictures wherever
the user wants. After the exercise, the user uploads favorite
pictures to Flickr, and also GPS data to GARMIN Con-
nect. Next, LifeLogMaps automatically downloads these
data from Twitter, Flickr and GARMIN Connect, integrates
them, and outputs the integrated data in a JSON format.
Finally, using Javascript the JSON data is passed to Google
Maps API to generate the integrated map.

Figure 6 is a screenshot of LifeLogMaps, showing that a
user “Saori” took for a walk to Takamatsu city, Japan, on
January 9th, 2010. In the map, two kinds of markers ap-
pear along with her walking trail, indicating locations where
a picture or short text is recorded. When a user clicks a
marker, the data is displayed in a popup window.

Note that LifeLogMaps is implemented by reusing the ex-
isting services, without creating dedicated services. We can
see that integrating three existing services provides more
value-added contents, rather than using them separately.

Implementation with Conventional APIs
First, we explain the conventional process of implementing
LifeLogMaps without the LLAPI. The process consists of
the following four steps:

Step1 (Obtain original lifelog data) Obtain lifelog data
using proprietary APIs or Web services provided by
Twitter, Flickr and GARMIN Connect.

Step2 (Extract data items) Extract necessary data items
by parsing data records obtained in Step1. Specifically,
select [date, time, tweet] from Twitter, [date, time, ti-
tle of picture, URL of picture] from Flickr, and [date,
time, latitude, longitude] from GARMIN.

Step3 (Join data items) Join the data items extracted
in Step2 on their date and time. Since the format and
interpretation of date and time are different service to
service, we convert them in a standard format before
executing the join. As a result, a list of data records
[date, time, latitude, longitude, tweet, title of picture,
URL of picture] is generated. Finally, the list is output
to a file in the JSON format.

Step4 (Create LifeLogMaps) Visualize the JSON data
using Google Maps APIs. Adjunct coordinates (lati-
tude, longitude) are linked by a line for representing a
trail. For each tweet (or picture), a marker is placed on
the corresponding coordinates. Finally, the marker is
configured to display the contents in a pop-up window
when clicked.

Implementation with Proposed Method
Next, we explain the implementation using the proposed
LLCDM and LLAPI. The process becomes quite simple and
systematic, since all of the three services and derived data
can be accessed in a uniformed way.

Step1’ (Obtain and join lifelog data) For a given date,
time and username, obtain data records of Twitter
by executing getLifeLog(). Let t be every Twitter
record. For each date (t->{date}) and time (t->{time}),
execute getLifeLogNearestTime() to retrieve the near-
est GARMIN record g. Then join t and g. Do the same
thing for every Flickr record. To these joined records,
add all records of GARMIN retrieved by getLifeLog().
Finally, output the record to a file in a JSON format.

Step2’ (Create LifeLogMaps) Same as Step4 of the con-
ventional method, and thus omitted.

6.2 Experiment
In the experiment, two students of our laboratory formed

a project, developing two versions of LifeLogMaps using the
conventional and the proposed methods. The students had
programming experience of C, Java, JavaScript, Perl, but no
a-priori knowledge of APIs of the lifelog services. The objec-
tive of the experiment is to evaluate the proposed method
from two aspects: (1) contribution to the effort and produc-
tivity in mashup development, and (2) contribution to the
performance of the application.

Effort and Productivity
For each development process, we measured the develop-
ment effort in man-day, and the size of products w.r.t. the
number of modules and the lines of code.

Table 2 shows the result. It can be seen in the table that
the development with the proposed method achieves 9 times
efficiency in the development effort and 5 times efficiency in
the product size. After the experiment, we interviewed the
students to validate the result.

The reasons why the conventional method required much
effort are explained as follows. First, it was necessary in
Step1 to learn the usage of proprietary APIs from differ-
ent service providers, which was time-consuming. In Step2,
for each of three services, the students had to understand
the data structure of the lifelog record, and had to imple-
ment a parser module to extract necessary data items. In
Step3, the students felt bothersome to understand and unify
the different data formats. The effort needed for the above
things must be accumulated if more and more services are
integrated.

On the other hand, opinions for the proposed method
were positive. Once having learned the usage of the LL-
CDM and LLAPI, the students could concentrate on im-
plementing the mashup logic only, without spending effort
for syntactical differences among services. This significantly
reduced the code size as well as development effort. Also,

iiWAS2010 Proceedings Social Networks and Mashups

266

Figure 6: A screenshot of LifeLogMaps

Table 2: Development effort and product size
Development method Number of modules The total lines of code Development man-hour

Conventional 7 394 LOC 42 man-day

Proposed 2 82 LOC 5 man-day

Table 3: Application performance
Development method

8-Jan 9-Jan 10-Jan 11-Jan 16-Jan 27-Jan 29-Jan 31-Jan

Conventional 3.9 6.4 4.0 3.8 4.2 5.0 4.6 3.9

Proposed 44.7 43.3 20.7 17.4 45.3 8.6 13.2 45.8

Size of Processed Log (KB) 2411 1635 2150 1028 1695 346 699 1307

Input Data Set

even if the number of services increases, the effort for re-
trieving the lifelog data would be the same, as long as the
service is supported by the proposed framework. Thus, the
more lifelog services are integrated, the more efficiency the
proposed method can achieve.

Application Performance
Next, we measured the execution time to compare the per-
formance of the two versions of LifeLogMaps. We used the
actual 8-day data of Twitter, Flickr and GARMIN Connect
collected during January 2010. For each version of LifeL-
ogMaps, we measured execution time taken for LifeLogMaps
to generate the JSON data. The result is shown in Table
3. Each column represents the execution time in second for
each data set. Just for the reference, we show the size of
lifelog records processed in the last row.

We can see that LifeLogMaps with the proposed LLAPI
took much more execution time (3 to 11 times worse) than
the conventional. The reason of such low performance is
explained as follows. In our current implementation, the
LLCDM repository (see Figure 4) is just a file system con-
taining converted data as XML files. Hence, for a given
query the LLAPI has to search the files sequentially, yield-
ing expensive overhead. Introducing an XML database and
caching mechanism would improve the performance drasti-
cally, which is our future work.

6.3 Feasiblity to Other Lifelog Services
To evalute feasibility of the LLCDM, we have applied the

LLCDM to 11 practical lifelog services (6 explained before,
plus Life Pod [10], Life-X [13], LifeSpaceTime [6], LOGPI
[12] and AcTrek [17]). For each service, we checked if the
original data record can be converted to the LLCDM by the
method in Section 3.8. Table 4 shows the result.

In the table,
√

(or −) represents that the data item is
originally supported (or unsupported, respectively) in the
service. A comment describes that the data item is originally
not supported, but can be produced by other data source.

It can be seen that for every service there exist at least
3 items as the common data of LLCDM. Thus, we believe
that the proposed LLCDM is generic and neutral enough to
accomodate data from heterogeneous lifelog services.

6.4 Related Work
Several studies have been reported on the mashup of Web

services. For example, Lizcano et al. [7] and Lorenzo et al.

Social Networks and Mashups iiWAS2010 Proceedings

267

Table 4: Feasibility of LLCDM to various lifelog services
 T
w
it
te
r
[1
5
]

 F
li
ck
er
*
[1
6
]

 F
o
o
d
L
o
g
[5
]

 G
A
R
M
IN

 C
o
n
n
ct
[8
]

 k
ar
ad
al
o
g
[1
1
]

 n
em

u
 l
o
g
 [
3
]

 L
if
e-
P
o
d
[1
0
]

 L
if
e-
X
[1
3
]

 L
if
eS
p
ac
eT

im
e[
6
]

 L
O
G
P
I[
1
2
]

 A
cT

re
c[
1
7
]

<content> tweets pictures food (photo)
GPS, heartbeat,

cadence

body

measurements
sleeping log user's actions

miscellaneous,

aggregation
miscellaneous tweets action history

<date> √ √ √ √ √ √ √ √ √ √ √

<time> √ √ √ √ - - √ √ √ √ √

<user> √ √ √ √ √ √ √ √ √ √ √

<party> #Topics - - - - - life:with - - - -

<object> √ - - - - - - -

To

addressed log
reply log -

<location> √ √ - √ - - √ √ location log - √

<application> √ √ √ √ √ √ √ √ √ √ √

<device> <source> taken with - <name> - - prf:Model - - - -

[4] presented frameworks supporting end-users for integrat-
ing Web services. Maximilien et al. [9] proposed an online
service to share and reuse mashup components on the Web.
Abiteboul [1] presented a notion of mashlet to provide nec-
essary information of components for global mashup. Basi-
cally, these methods support just operation integration in the
conventional mashup. The proposed method achieved also
data integration with the LLCDM by focusing our domain
within lifelog services.

Amato et al. [2] proposed a common data model for sensor
network systems, in order to unify proprietary data formats
provided by multi-vendor sensor devices. The data model
(schema) is designed specifically for sensors, simply consist-
ing of sensor characteristic and its measurement. Hence, it
cannot be applied directly to the lifelog services which tend
to have more attributes and complex structures.

7. CONCLUSION
In this paper, we have proposed the lifelog common data

model (LLCDM) and the lifelog mashup API (LLAPI) for ef-
ficient integration of heterogeneous lifelog services. The pro-
posed method was evaluated through an experiment, where
a practical mashup application, LifeLogMaps, was devel-
oped. It was shown that the proposed method significantly
improved the efficiency of the mashup development. Our
future work includes the performance improvement of the
LLAPI as well as supports for more services. It is also in-
teresting to consider the privacy and copyright issues for
business and commercial use.

8. ACKNOWLEDGMENTS
This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture, Grant-in-
Aid for Young Scientists (B) (No.21700077).

9. REFERENCES
[1] S. Abiteboul, O. Greenshpan, and T. Milo. Modeling

the mashup space. In WIDM ’08: Proceeding of the
10th ACM workshop on Web information and data
management, pages 87–94, New York, NY, USA, 2008.

[2] F. Amato, V. Casola, A. Gaglione, and A. Mazzeo. A
common data model for sensor network integration.
Complex, Intelligent and Software Intensive Systems,
International Conference, 0:1081–1086, 2010.

[3] BOstudio, Inc. nemulog. http://www.nemulog.jp/.

[4] G. Di Lorenzo, H. Hacid, H.-y. Paik, and
B. Benatallah. Data integration in mashups. SIGMOD
Rec., 38(1):59–66, 2009.

[5] K. Kitamura, T. Yamasaki, and K. Aizawa. Foodlog:
Capture, analysis and retrieval of personal food
images via web. In CEA ’09: Proceedings of the ACM
multimedia 2009 workshop on Multimedia for cooking
and eating activities, pages 23–30, New York, NY,
USA, 2009. ACM.

[6] LifeSpaceTime. LifeSpaceTime.
http://www.lifespacetime.com/.

[7] D. Lizcano, J. Soriano, M. Reyes, and J. J. Hierro.
Ezweb/fast: Reporting on a successful mashup-based
solution for developing and deploying composite
applications in the upcoming web of services. In
iiWAS ’08: Proceedings of the 10th International
Conference on Information Integration and Web-based
Applications & Services, pages 15–24, New York, NY,
USA, 2008. ACM.

[8] G. Ltd. Garmin. http://connect.garmin.com/.

[9] E. M. Maximilien, A. Ranabahu, and K. Gomadam.
An online platform for web apis and service mashups.
IEEE Internet Computing, 12:32–43, 2008.

[10] A. Minamikawa, N. Kotsuka, M. Honjo, D. Morikawa,
S. Nishiyama, and M. Ohashi. Rfid supplement for
mobile-based life log system. Applications and the
Internet Workshops, IEEE/IPSJ International
Symposium on, 0:50, 2007.

[11] NTT Resonant Inc. karadalog.
http://karada.goo.ne.jp/.

[12] paperboy&co. . Logpi. http://logpi.jp/.

[13] Sony Marketing (Japan) Inc. Life-x.
http://life-x.jp/.

[14] Trend Watching .com. Life caching – an emerging
consumer trend and related new business ideas. http:
//trendwatching.com/trends/LIFE_CACHING.htm.

[15] Twitter, Inc. twitter. http://twitter.com/.

[16] Yahoo. Flickr. http://www.flickr.com/.

[17] H. Yamane and K. Nagao. Actrec: Personal action
support by situation awareness and recording [in
japanese]. The 66th National Convention of IPSJ,
66(3):115–116, 2004.

iiWAS2010 Proceedings Social Networks and Mashups

268

