
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

サービス指向ホームネットワークにおける
エンドユーザ向けコンテキストアウェアサービス構築環境の実装と評価

松尾 周平† 柗本 真佑† 中村 匡秀†

† 神戸大学 〒 657-8501 神戸市灘区六甲台町 1-1
E-mail: †matsuo@ws.cs.kobe-u.ac.jp, ††{shinsuke,masa-n}@cs.kobe-u.ac.jp

あらまし ホームネットワークシステム (HNS)は，ネットワークに接続された家電機器やセンサを協調動作させる

ことによってエンドユーザに付加価値サービスやコンテキストアウェアサービスを提供するシステムである．従来，

HNSのサービスはシステムの提供者によって開発されているが，環境の変化や個人の嗜好に合わせたサービスを構築

するためにエンドユーザ自身がサービスを開発できる環境も必要となる．この論文では”Sensor Service Binder(SSB)”

という新たなサービス構築環境を提案する．SSBは，HNSにおいてエンドユーザがコンテキストアウェアサービス

を構築するための容易に利用できるユーザインタフェースである．サービス指向 HNSに則して構築することにより，

SSBは専門知識のないエンドユーザがセンサを使ってコンテキストを登録すること，及び登録されたコンテキストと

ネットワーク接続された家電機器の操作を結びつけることを可能にし，コンテキストアウェアサービスを構築できる．

SSBを実装し，実際の HNSでの評価実験を行った結果，コンテキストアウェアサービスを作るための取り組みを 10

分の 1に減らせることが分かった．

キーワード ホームネットワークシステム，コンテキストアウェアサービス，エンドユーザ開発，サービス指向アー

キテクチャ

Design and Evaluation of End-User Development Environment for

Context-Aware Services in Service-Oriented HNS

Syuhei MATSUO†, Shinsuke MATSUMOTO†, and Masahide NAKAMURA†

† Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
E-mail: †matsuo@ws.cs.kobe-u.ac.jp, ††{shinsuke,masa-n}@cs.kobe-u.ac.jp

Abstract The home network system (HNS, for short) provides value-added and context-aware services for home

users, by orchestrating networked home appliances and sensors. Although the HNS services have been developed by

system vendors, there exist strong needs that the end-users create their own services according to their convenience.

This paper presents a novel service creation environment, called Sensor Service Binder (SSB), which provides a

user-friendly interface for creating context-aware services within the HNS. Built on top of the service-oriented HNS,

the SSB allows non-expert users to register contexts using the sensors, and to bind the registered context to any

operation of the networked appliances. Experimental evaluation with an actual HNS showed that the effort for

service creation was reduced to 10% by introducing the proposed SSB.

Key words home network system, context-aware applications, end-user development, service-oriented architecture

1. Introduction

Research and development of the home network system

(HNS, for short) is recently a hot topic in the area of ubiqui-

tous computing applications [1] [2]. Orchestrating house-hold

appliances and sensors via network, the HNS provides var-

ious value-added services for home users. Typical services

include; the remote control service inside/outside home, the

monitoring service of device and environment status, and the

integrated service of multiple appliances [3].

In this paper, we especially focus on the context-aware

service [4] within the HNS, which automatically triggers ser-

— 1 —

vice operations based on contextual information. A context-

aware service is basically implemented by binding a context

to an operation of the HNS device.

The context is usually characterized by device states

and/or environment properties gathered by sensors. For in-

stance, binding a context “Hot: temperature>=28C” with

an operation “airConditioner.cooling()” implements an

autonomous air-conditioning service.

Such context-aware services have been developed by ven-

dors in a “ready-made” form.

However, due to the variety of user’s tastes on the con-

text, appliances deployed and surrounding environment, the

conventional ready-made services do not necessarily cover all

requirements of end-users. In the above example, a user may

feel hot when the temperature is 26C. Also, she may want

to use a fan instead of the air-conditioner, as she dislikes the

air-conditioner.

To cope with such fine requirements by end-users, we pro-

pose a context-aware service creation environment for the

HNS, called Sensor Service Binder (SSB). We have previ-

ously developed the service-oriented HNS [3], where opera-

tions of the HNS appliances and sensors are exhibited as

Web services. The SSB is built on top of the service-oriented

HNS, and supports end-users to perform the following two

primary tasks to create a context-aware service:

• Register: Define an end-user context with device

states and sensor values, and register it to the server.

• Subscribe: Bind a registered context to a desired

appliance operation. The operation is triggered when the

context becomes true.

We have conducted an experimental evaluation where non-

expert users create simple context-aware services with the

SSB. It was shown that the time taken for each subject to

create a service was a couple of minutes. We also observed

that the number of faults in invoking Web service APIs was

significantly reduced. These facts imply that the proposed

SSB can contribute to efficient and reliable end-user devel-

opment of context-aware services in the HNS.

2. Preliminaries

2. 1 Service-Oriented HNS

Applying the service-oriented architecture (SOA) to the

HNS is a smart solution to achieve the programmatic interop-

erability among heterogeneous and distributed HNS devices.

Wrapping proprietary control protocols by Web services pro-

vides loose-coupling and platform-independent access meth-

ods for external software that uses the devices. Several stud-

ies have been reported on the service orientation of home

appliances [1] [2] and sensor networks [5] [6].

In our previous work [3], we have also designed and im-

plemented a service-oriented HNS, called CS27-HNS, using

actual home appliances and sensors. As shown in Figure 1,

the CS27-HNS consists of appliance services, sensor services,

and a home server that manages and controls the services.

Each appliance (or sensor) device is abstracted as a service,

where features of the device are exhibited as Web services

(Web-APIs), encapsulating a device-proprietary protocol un-

der the service layer.

Each appliance service has a set of Web-APIs that oper-

ate vendor-neutral features of the appliances. These Web-

APIs can be executed by external applications (usually in-

stalled in the home server) using standard Web service pro-

tocols (i.e., REST or SOAP). For example, a TV service

has methods for selecting channels, volume, input sources,

etc., which are commonly included in any kinds of TVs.

To select channel No.4 of the TV, one can just access

a URL http://cs27-hns/TVService/channel?no=4 with a

Web-supported application (e.g., Web browser).

On the other hand, every sensor service in the CS27-HNS

has the same set of Web-APIs. The API getValue() re-

turns the current normalized value of an environment prop-

erty, such as temperature (C), brightness (lux). Other APIs

register() and subscribe() are for sensor-driven context-

aware services, explained in the next section.

2. 2 Context-Aware Services in HNS

By using the sensor services in the HNS, it is possible to

gather various contexts [7] of the environment and users. A

context can be used for triggering appliance services, which

implements a context-aware service in the HNS. For exam-

ple, one may define a context “Hot” to represent that “the

room temperature is 28C or greater”. Then, binding Hot to

a Web-API AirConditioner.cooling() achieves a context-

aware air-conditioning service.

To facilitate the context management, the sensor services

in our CS27-HNS conform to a special framework, called

Sensor Service Framework (SSF) [8]. For every sensor de-

vice, the SSF provides autonomous monitoring/notification

services for the device, performed by a pair of Web-APIs:

register() and subscribe(). A client of a sensor service

first defines a context by a logical expression over the sen-

sor value. Then, the client registers the context to the ser-

vice using register() method. Next, the client executes

subscribe() to tell a callback Web-API. After that, the ser-

vice keeps monitoring the sensor value. When the registered

context (i.e., the logical expression) becomes true, the SSF

invokes the callback Web-API. Note that different clients can

register multiple contexts in the same sensor service, and that

any registered context can be shared and reused by different

subscriptions.

Using the SSF in the CS27-HNS, the example air-

— 2 —

Home Server (GW)

Apps

Service
Layer

Air-Conditoner Service

setTemp()

setTimer()

power()

Service
Layer

TV Service
channel()

volume()

input()

Service
Layer

Light Service

off()

adjust()

on()

Appliance Services

WSDL

WSDL

WSDL

Service
Layer

Light Sensor Service
getValue()

register()

subscribe()

Service
Layer

Temp.Sensor Service
getValue()

register()

subscribe()

Service
Layer

Motion Sensor Service
getValue()

register()

subscribe()

Sensor Services

WSDL

WSDL

WSDL

REST / SOAP

External NetworkHome Server (GW)

Apps

Service
Layer

Air-Conditoner Service

setTemp()

setTimer()

power()
Service
Layer

Air-Conditoner Service

setTemp()

setTimer()

power()

Service
Layer

TV Service
channel()

volume()

input()

Service
Layer

TV Service
channel()

volume()

input()

Service
Layer

Light Service

off()

adjust()

on()
Service
Layer

Light Service

off()

adjust()

on()

Appliance Services

WSDL

WSDL

WSDL

Service
Layer

Light Sensor Service
getValue()

register()

subscribe()

Service
Layer

Service
Layer

Light Sensor Service
getValue()

register()

subscribe()

Service
Layer

Temp.Sensor Service
getValue()

register()

subscribe()

Service
Layer

Service
Layer

Temp.Sensor Service
getValue()

register()

subscribe()

Service
Layer

Motion Sensor Service
getValue()

register()

subscribe()

Service
Layer

Service
Layer

Motion Sensor Service
getValue()

register()

subscribe()

Sensor Services

WSDL

WSDL

WSDL

REST / SOAP

External Network

(a) Architecture

(b) Experimental Room

(c) Control Panel

Figure 1 Service-Oriented Home Network System, CS27-HNS

conditioning service can be easily implemented by the fol-

lowing sequence of REST invocations.

（ 1） Define a context Hot as an expression “temperature

>=28”, and register it to TemperatureSensorService.

http://cs27-hns/TemperatureSensorService/register?

context=Hot&expression=’temperature⟩=28’

（ 2） Bind Hot to Web-API AirConditioner.cooling().

http://cs27-hns/TemperatureSensorService/subscribe?

context=Hot¬ify

=’http://cs27-hns/AirConditionerService/cooling’

2. 3 End-User Development of Context-Aware

Services

Although the CS27-HNS with the SSF facilitates the devel-

opment of context-aware services, it is yet quite challenging

for end-users, who have no expertise in programming with

Web services, to develop their own services. To use a sensor

(or appliance) service, a user has to understand the interface

and end point of the Web-API, usually described in WSDL.

Also, the information managed by the SSF (sensor spec.,

registered contexts, callback APIs, etc.) are all described in

XML. It is hard for non-expert users to understand and use

the sensor services correctly.

Under this situation, our objective is to support the non-

expert end-users to create their own services. For this, we

propose a novel service creation environment, called Sensor

Service Binder (SSB), built on top of the CS27-HNS.

3. Sensor Service Binder: User-Friendly
Interface for Context-Aware Service
Creation

3. 1 Overview

The SSB provides a graphical user interface for rapid cre-

ation of context-aware services, which acts as a front-end of

the CS27-HNS with the SSF. The SSB automatically parses

the WSDL and the XML files of the sensor/appliance ser-

vices. It then displays the information in an intuitive and

user-friendly form. The user can play with the services

through basic widgets such as buttons, lists and textboxes,

without knowing underlying information like the service end

point, the message types, etc. Since the SSB restricts the

user’s input from the GUI only, it is possible to minimize

the careless faults in operating services.

Also, the SSB can search and aggregate contexts and call-

back Web-APIs registered in all sensor services. This feature

allows users to overlook the entire list of available contexts

and corresponding services. The list can be used to verify,

reuse and refine the existing context-aware services, which

were difficult activities by the SSF only.

The SSB provides the following two primary features sup-

porting end-users.

• (F1: Registration Feature) Register a user-defined

context by executing register() method of the sensor ser-

vice.

• (F2: Subscription Feature) Bind a registered con-

text to an Web-API of a HNS operation using subscribe()

method of the sensor service.

— 3 —

(a) Context Registration (b) Context Subscription

Figure 2 Screenshot of Sensor Service Binder

3. 2 Context Registration Feature of SSB

This feature allows a user to define and register a context

using the sensor services. In the SSB, a context is defined by

a name and a condition. The context name is a unique label

identifying the context, whereas the context condition is a

logical expression composed of sensor values and comparison

operators.

Figure 2(a) shows a screenshot of the registration feature.

The left side of the screen is the registration pane. A user

first chooses a favorite sensor service from the drop-down

list, and then enters a context name in the textbox. In the

below of the textbox, an attribute of the sensor service is au-

tomatically derived and shown. The user defines a context

condition by an expression over the attribute. In the default

mode, the SSB allows only a constant value and a compari-

son operator, just for convenience. Finally, the user presses

the “Register” button. The SSB registers the context to the

service by invoking register() method.

The right side of the screen represents a list of contexts

that were already registered. The list is dynamically created

by getRegisteredContexts() method of the SSF. Each line

contains a context name, a context condition and a sensor

service where the context is registered. The user can check if

the created context is registered. The user can also discard

unnecessary contexts by just pressing “Delete” button. The

SSB requests the service to delete the context.

3. 3 Context Subscription Feature of SSB

This feature helps a user bind a registered context to a

Web-API of the appliance operation. Figure 2(b) shows

a screenshot of the context subscription feature. The left

side of the screen enumerates the registered contexts, each

of which is labeled by the context name. When a user clicks

a preferred context, the context is chosen for the binding.

The right side of the screen shows the list of appliance ser-

vices deployed in the HNS. When a user clicks a preferred

appliance, a menu of operations of the appliance is popped

up. Then the user chooses an operation to bind. The list

of appliances and the menu of operations are automatically

generated by parsing the WSDL of the appliance services.

Finally, when the user clicks “Bind” button in the center,

the SSB subscribes the binding by executing subscribe()

method. This completes a service creation. The subscribed

contexts are shown in the textbox in the center, where the

user can delete any binding.

3. 4 Example

As an illustrative example, let us create a simple service,

say automatic TV service with the SSB. This service turns

on a TV only when a user sits down on a couch. We suppose

that a Force sensor is deployed under the couch to detect a

human sitting on the couch.

First, we define and register a context SitDown using the

registration feature. From the drop-down list of sensors (see

Figure 2(a)), we choose the Force sensor. Then we enter

the name SitDown in the textbox, and make a condition as

pressure==true. Finally, we press the register button.

Next, we bind SitDown to TV.on() using the subscription

feature. We first choose SitDown from the context list of Fig-

ure 2(b). Then, we choose TV from the appliance list, and on

from the operation menu. Finally, we press the bind button.

Similarly, we create a context StandUp as pressure==false,

and then bind it to TV.off(), which completes the creation

of the automatic TV service.

— 4 —

4. Evaluation

4. 1 Experiment Setting

To evaluate the effectiveness, we have conducted an exper-

iment of service creation with (and without) the proposed

SSB.

The total 6 subjects (3 under-graduates, 2 graduates, and

1 faculty) participated in the experiment. None of the sub-

jects was familiar with the CS27-HNS or the SSF.

In the experiment, we asked the subjects to do the follow-

ing tasks.

• (T1: context registration) Each subject defines

and registers the following 5 contexts.

（ 1） SitDown: A force sensor detects a pressure.

（ 2） StandUp: A force sensor detects no pressure.

（ 3） Dark: A light sensor measures below 200lux.

（ 4） Hot: A temperature sensor shows above 15C.

（ 5） Moved: A motion sensor detects a motion.

• (T2: context subscription) Each subject binds a

registered context to an appliance service. Specifically, each

subject creates the following 5 bindings.

（ 1） Turn on a TV when SitDown holds.

（ 2） Turn off a TV when StandUp holds.

（ 3） Turn on a ceiling light when Dark holds.

（ 4） Turn on a air conditioner when Hot holds.

（ 5） Close a curtain when Moved holds.

Each task was performed in two ways.

• [with SSB] Each subject uses the SSB.

• [without SSB] Each subject uses a Web browser to

directly access the Web-APIs of the CS27-HNS.

To avoid the habituation effect, the half of the subjects per-

formed [with SSB] first, and the other half executed [without

SSB] first.

The usage of the Web browser in [without SSB] is due to

the fact that it is the most familiar tool for users that can

invoke the Web-APIs. In the experiment, the subjects were

instructed to enter URIs of the Web-APIs in the address

bar of the browser. Another option is to train the subjects

for writing programs. However, this is too expensive and is

beyond our assumption of “end-users”.

The experiment was performed as follows.

（ 1） We gave instructions of the experiment as well as

the usage of the SSB and the Web-APIs.

（ 2） We showed a sample task of T1 to the subjects.

（ 3） Each subject conducted T1.

（ 4） We showed a sample task of T2 to the subjects.

（ 5） Each subject conducted T2.

（ 6） We interviewed the subjects for the usability of the

SSB and the browser-based service creation.

We have measured the time taken for completing the tasks,

70
40

0
80

0
12

00

T1

w/o
SSB

with
SSB

T2

w/o
SSB

with
SSB

se
c

70
40

0
80

0
12

00

Figure 3 Experiment Result: time taken for tasks [sec.]

to evaluate the efficiency. We also counted the number of

faults in user’s operations as a reliability measure.

4. 2 Result

Figure 3 shows a boxplot of the time taken for the sub-

jects to complete each task. t is shown in task T1 that the

context registration with the SSB took 76 seconds on the

average, which is 12% of the time taken without the SSB.

Similarly in task T2, the context subscription with the SSB

took only 74 seconds on the average, which is 9% of the time

without the SSB. It is also interesting to see that using the

SSB all the subjects completed the task as quickly as one

minute and plus, which reflects the user-friendly and intu-

itive design of the SSB. These results show how the SSB

improves to efficiency of the end-user development.

Table 1 shows the number of faults made by subjects in

each task, summarized according to (a) individual subjects

and (b) fault types. Due to a trouble in recording, data for

[T1 without SSB] of subject S1 was omitted.

It was surprising to see that no operational fault was made

in any task with the SSB. Among the tasks without the SSB,

more faults occurred in T2 since the task of subscription is

generally more troublesome than registration.

Investigating the type of faults, we found that the subjects

were likely to mistype very long URIs of the Web-APIs in the

browser. It was also seen that the subjects were often at a

loss to identify the correct sensors and appliances. These

faults were well circumvented by the GUI of the SSB, which

reflects the reliability of the service creation.

On the other side of the successful results, we also recog-

nized limitations of the SSB in the subsequent interview. A

subject pointed out: “As more and more contexts are regis-

tered, the context list of the SSB will become larger. So, it

is quite hard for me to search a correct context.” The same

thing happens when the number of sensors and appliances is

dramatically increased. To cope with this problem, the SSB

— 5 —

Table 1 Experiment Result: number of faults

(a) Number of faults for individual subject

w/o SSB with SSB

Subject ID T1 T2 T1 T2

S1 — 6 0 0

S2 1 1 0 0

S3 2 3 0 0

S4 2 5 0 0

S5 1 1 0 0

S6 0 3 0 0

Total 6 19 0 0

Average 1.2 3.2 0.0 0.0

(b) Number of faults with respect to fault types

w/o SSB

Fault type T1 T2

Wrong URI of sensor service 4 5

Wrong URI of appliance operation 0 4

Wrong argument of Web service 1 1

Registration to wrong sensor service 0 4

Subscription to wrong appliance operation 0 4

Wrong context name 0 1

Wrong context condition 1 0

has to employ efficient search and reuse techniques for the

contexts and services, which is left for our future work.

5. Conclusion

We have presented a novel environment, called Sensor Ser-

vice Binder, for end-user development of context-aware ser-

vices.

We have also conducted an experimental evaluation with

non-expert users using the practical home network system,

CS27-HNS. It was shown that the SSB significantly reduced

the development time and the number of faults within the

service creation contributed to the efficiency and the relia-

bility in developing context-aware services.

Our primary future work is to implement features to search

and reuse the developed contexts and services in the SSB.

Acknowledgment

This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture, Grant-in-

Aid for Young Scientists (B) (No.21700077).

Reference

[1] C.L. Wu, C.F. Liao, and L.C. Fu, “Service-oriented smart

home architecture based on osgi and mobile agent technol-

ogy,” IEEE Transactions on Systems, Man, and Cybernetics

(SMC), Part C, vol.37, no.2, pp.193–205, 2007.

[2] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and

C. Marin, “A dynamic-soa home control gateway,” Proc.

the 3rd IEEE International Conference on Services Com-

puting (SCC), pp.463–470, 2006.

[3] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and

K. Matsumoto, “Constructing home network systems and

integrated services using legacy home appliances and web

services,” International Journal of Web Services Research,

vol.5, no.1, pp.82–98, 2008.

[4] B.N. Schilit, N. Adams, and R. Want, “Context-aware com-

puting applications,” Proc. the 1st IEEE Workshop on

Mobile Computing Systems and Applications (WMCSA),

pp.85–90, 1994.

[5] T. Gross, T. Egla, and N. Marquardt, “Sens-ation: A

service-oriented platform for developing sensor-based infras-

tructures,” International Journal of Internet Protocol Tech-

nology (IJIPT), vol.1, no.3, pp.159–167, 2006.

[6] J. King, R. Bose, H. i Yang, S. Pickles, and A. Helal, “Atlas:

A service-oriented sensor platform hardware and middle-

ware to enable programmable pervasive spaces,” Proc. the

31st IEEE Conference on Local Computer Networks (LCN),

pp.630–638, 2006.

[7] A.K. Dey, and G.D. Abowd, “Towards a better understand-

ing of context and context-awareness,” Proc. the 1st Inter-

national Symposium on Handheld and Ubiquitous Comput-

ing (HUC), pp.304–307, 1999.

[8] H. Sakamoto, H. Igaki, and M. Nakamura, “A sensor service

framework for context-aware applications (in japanese),”

Technical Report 458, Institute of Electronics, Information

and Communication Engineers, 2009.

— 6 —

