822

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

[PAPER

Modeling and Detecting Feature Interactions among Integrated

Services of Home Network Systems

SUMMARY This paper presents a framework for formalizing and de-
tecting feature interactions (FIs) in the emerging smart home domain. We
first establish a model of home network system (HNS), where every net-
worked appliance (or the HNS environment) is characterized as an object
consisting of properties and methods. Then, every HNS service is defined
as a sequence of method invocations of the appliances. Within the model,
we next formalize two kinds of FIs: (a) appliance interactions and (b) en-
vironment interactions. An appliance interaction occurs when two method
invocations conflict on the same appliance, whereas an environment in-
teraction arises when two method invocations conflict indirectly via the
environment. Finally, we propose offline and online methods that detect
FIs before service deployment and during execution, respectively. Through
a case study with seven practical services, it is shown that the proposed
framework is generic enough to capture feature interactions in HNS inte-
grated services. We also discuss several FI resolution schemes within the
proposed framework.

key words: feature interaction, home network system, online detection,
integrated services

1. Introduction

With the rapid diffusion of ubiquitous technologies, general
household appliances are being equipped with smart pro-
cessors and network interfaces. Smart home appliances,
such as TVs, DVDs, speakers, air-conditioners, lights, doors
and sensors, are connected to a LAN at home, comprising
a home network system (HNS). Several services for HNS
are being developed and provided (e.g., [1]-[4]). Currently,
most conventional services use a single or a small set of
appliances. However, the main advantage of HNS lies in
the integration (or orchestration) of different appliances to-
gether [5]. The integration would yield more value-added
and sophisticated services, which we call HNS integrated
services.

We here introduce two examples. In the examples, we
assume that a DVD player, a TV, a 5.1ch speaker, blinds,
a light, an illuminometer and a door are installed in an ex-
perimental room. Also, the integrated services share these
appliances.

DVD Theater Service: Integrating the DVD player, the
TV, the speaker, the blinds and the light, the service

Manuscript received May 21, 2009.
Manuscript revised November 23, 2009.

"The authors are with the Faculty of Computer Science
and Systems Engineering, Kobe University, Kobe-shi, 657-8501
Japan.

a) E-mail: igaki@cs.kobe-u.ac.jp
b) E-mail: masa-n@cs.kobe-u.ac.jp
DOI: 10.1587/transinf. E93.D.822

Hiroshi IGAKI™ and Masahide NAKAMURA™, Members

allows a user to watch movies in a theater-like atmo-
sphere just within a single operation. The DVD player
is switched on, the TV is turned on in DVD mode, the
blinds are closed, the brightness of the light is mini-
mized, 5.1ch mode of the speaker is selected, and the
sound volume of the speaker is automatically adjusted.

Coming Home Light Service: Integrating the door sensor,
the light and the illuminometer, the service supports a
user in entering the house. When the door sensor no-
tices that the user has come home, the light is auto-
matically turned on. Then, the brightness of the light
is adjusted to the optimal value based on the current
degree obtained from the illuminometer.

As the number of appliances grows, many integrated
services will be provided to meet various customers’ needs.
However, combined use of multiple services may cause
functional conflicts, which significantly decreases the qual-
ity of services and may raise serious safety-critical issues.
The conflicts among services are generally known as the
feature interaction problem (FI) [6]. For instance, the above
two services cause FIs.

FIs between DVD Theater & Coming Home Light: Sup-
pose that a user A is watching movie with the DVD
Theater. Simultaneously, suppose that another user B
comes home, activating the Coming Home Light. Then
the following FIs occur.

FI-(a): Although the DVD Theater minimizes the bright-
ness of the light, the Coming Home Light sets the
brightness comfortable for B. This may ruin A’s ex-
perience of watching the movie in a good atmosphere.

FI-(b): If the blinds are closed (by DVD Theater) imme-
diately after the lights read the degree from the illu-
minometer (by Coming Home Light), the lights may
fail to set the optimal illumination. This is because the
blinds make the room darker.

FIs have been studied for years mainly in the telecom-
munication services (e.g., [7], [8]). However, little research
has been done on this emerging domain of HNS (see
Sect. 6.4).

As more and more appliances and services are provided
in the future, the FI problem in the HNS will be more and
more critical. For instance, the FI among RemoteKeyLock
service and FireEvacuation service may cause a serious ac-
cident, where people are locked in the room in case of fire.
Also, as the number of services increases, the number of

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers

IGAKI and NAKAMURA: MODELING AND DETECTING FEATURE INTERACTIONS AMONG INTEGRATED SERVICES OF HOME NETWORK SYSTEMS

such potential FIs grows combinatorially. Thus, it is essen-
tial to establish a solid foundation to manage the FI problem
systematically.

The goal of this paper is to propose a framework for
formalizing FIs in HNS and to develop detection methods
of such FIs. We first establish a formal model of HNS in
an object-oriented fashion. Specifically, we model each ap-
pliance as an object consisting of properties and methods.
The behavior of the appliance is simply characterized by
pre-condition and post-condition in each method, prescrib-
ing rules for state transitions. We similarly define an object
for the home environment. Next, we define each integrated
service as a sequence of invocations of the appliance meth-
ods.

Within the model, we formalize the FI as a pair
of method invocations m and m’ that are incompatible
with each other. For this, we define two types of Fls:
appliance interaction and environment interaction. In-
tuitively, the appliance interaction refers to a situation
where m and m’ directly conflict on the same appliance.
The above FI-(a) corresponds to an appliance interac-
tion, where two methods, say, Light.setBrightness(5)
and Light.setBrightness(100) conflict on Light object.
On the other hand, the environment interaction is that m
and m’ do not share the same appliance but they con-
flict indirectly via the home environment. The above FI-
(b) is an environment interaction, where two methods,
say, Blinds.close() and I1luminometer.getBrightness()
conflict on Brightness property of the home environment".

Based on the framework, we develop offline and on-
line detection methods for FIs in HNS. The offline detection
tries to detect all potential Fls, before deploying services.
On the other hand, the online method detects FIs only when
they occur during runtime. In a case study with seven prac-
tical services, we detected as many as 67 potential FIs (43
appliance interactions and 24 environment interactions).

The digest version of this article was published as a
conference paper in ICFI’05[9]. Changes were made to
this version, most significantly the revision of definitions of
HNS and integrated services (Sect.3). We also added the
on-line FI detection, case study, and evaluation parts (from
Sect. 5.2 to the end). We believe that these new results clar-
ify the applicability and limitations of the proposed method
in practical settings.

2. Preliminaries
2.1 Home Network System (HNS)

A HNS consists of one or more networked appliances con-
nected to a LAN at home. Each networked appliance has
a set of control APIs, so that the user or external software
agents can control the appliance via the network (e.g., [10],
[11]). For example, every air-conditioner should have APIs
for controlling power and temperature settings. A speaker
will have APIs for volume and channel (2ch or 5.1ch). To
process the API calls, every appliance generally has embed-

823

IIIumlnometer Light
ArConditioner |oner

Ther

Phone Door
Blinds

Fig.1 A home network system.

ded units including a processor and a storage. If a HNS con-
tains multiple appliances in the same kind, we regard them
as independent objects. For example, if there are four lights
in the room, we put four objects Light1, Light2, Light3
and Light4 in our model.

Figure 1 shows an example of HNS, which consists of
ten appliances and a home server. The home server typically
plays arole of gateway to the external network. It also works
as an application server, where the HNS applications are in-
stalled [12]. As seen in Fig. 1, every HNS integrated service
is implemented as a software application that invokes the
APIs according to a certain control flow. The services are
supposed to be installed in the home server. When a user
requests to activate an integrated service, the home server
launches the service and invokes appliance APIs defined in
the service.

Communications among the appliances and the home
server are performed by an underlying HNS protocol. Var-
ious standards for the HNS protocols have been pro-
posed, such as X-10[13], HAVi[14], ECHONET[11] and
UPnP [15]. In this paper, we aim to propose a framework
independent of specific protocols or underlying platforms.
Therefore, abstracting the network layer or below, we as-
sume that a certain mechanism (e.g., middleware) for han-
dling the communications is available in a given HNS.

2.2 Examples of HNS Integrated Services

For more comprehensive discussion, we introduce examples
of HNS integrated services taken from actual HNS prod-
ucts [1]. In the examples, we assume the HNS in Figure 1,
where ten appliances (a DVD player, a TV, a speaker, a light,
an illuminometer, a door with a sensor, a telephone, an air-
conditioner, a thermometer and blinds) are installed.

Each example shows a service scenario labeled by S'S;
1<i<).

S§S1: Auto-TV Service - The TV is turned on, the speaker’s
channel is set to 2ch, and the volume of the speaker is
automatically adjusted for the TV mode.

S S,: DVD Theater Service - The DVD player is switched
on, the TV is turned on in DVD mode, the blinds are
closed, the brightness of the light is minimized, 5.1ch
mode of the speaker is selected, and the volume of the

"Here, if the DVD Theater Service and the Coming Home
Light Service use different light appliances, the environment in-
teraction occurs.

824

speaker is automatically adjusted.

S S 3: Coming Home Light Service - When the door (sen-
sor) notices that the user has come home, the light is
automatically turned on. Then, the illumination of the
light is adjusted to the optimal value based on the cur-
rent degree obtained from the illuminometer.

S S4: Coming Home Air Conditioning Service - When
the door sensor notices that the user has come home,
the air-conditioner is turned on, and its temperature set-
ting is adjusted to the optimal based on the current de-
gree of temperature provided by the thermometer.

SS'5: Ringing and Mute Service - When the telephone
rings, the volume of the speaker is muted.

S Se: Blinds Service - When sunlight is available, the
blinds are opened.

S S7: Sleep Service - When the user goes to bed or goes
outside, all appliances are turned off.

2.3 Assumptions

Here, we impose the following assumptions to make the
scope of our framework clearer.

Assumption Al: All appliances used by the integrated ser-
vices are located in an experimental room.

Assumption A2: For every appliance name app used in the
integrated service, there exists exactly one actual appli-
ance d corresponding to app.

Assumption A3: We formalize and detect feature interac-
tions between every pair of services only. Three-way
(or more) interactions, which occur only within more
than two services, are beyond this paper.

Assumption A1 implies that all the appliances share the
same environment.

Assumption A2 indicates that the one-to-one relation-
ship between the appliance references in the service and the
real appliances should be given in advance. For instance, if
the name DVD is used in a service, there must exists an ac-
tual DVD player uniquely specified in the HNS. If a service
contains two lights Lightl and Light2, the concrete lights,
for instance, a ceiling light and a downlight are respectively
assigned to Light1 and Light2. Such static binding between
the appliance references and the real appliances can be seen
in the current HNS (e.g., [1], [11]). So, we consider that As-
sumption A2 is reasonable to a certain extent. However,
there exists more flexible HNS that allows dynamic bind-
ings [16]. For such an advanced HNS, the assumption must
be relaxed. More detailed discussion about the dynamic
binding will be given in Sect. 6.5.

In Assumption A3, we suppose that we aim to detect
feature interactions within every pair of two services. Theo-
retically speaking, there exists three-way interactions which
occur only when three or more services are executed. How-
ever, we assume that these are out of scope of this paper.

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

3. Formalizing HNS and Integrated Services
3.1 Key Idea

Our key idea to formalize the HNS and integrated service
is to capture every appliance as a self-contained object. In
general, every appliance has an internal state and behav-
iors. For instance, an air-conditioner has at least two states
ON or OFF with respect to power. Also, the air-conditioner
has states each of which corresponds to a specified tem-
perature setting. The internal state is changed by execut-
ing the APIs (see Sect.2.1), which determines the behav-
ior of the air-conditioner. For instance, executing an API
setTemperature(23) changes the current temperature set-
ting to 23 degree. Thus, it is quite natural to regard every
appliance as an object consisting of properties and meth-
ods. The properties are primary attributes characterizing
the internal state of an appliance. In the above small ex-
ample, properties of the air-conditioner would be Power and
TempSet.

On the other hand, the methods correspond to the APIs
of the appliance. The details of each API are usually en-
capsulated in a vendor-specific implementation. Therefore,
various abstraction levels can be considered to model the
corresponding method. In this paper, we simply charac-
terize each method by a pair of pre-condition and post-
condition to achieve the generality of the model. Intu-
itively, the pre-condition and the post-condition respec-
tively work as a guard and an action. For instance,
the API setTemperature(23) is modeled as a method
with a pre-condition: [Power=="0N’] and a post-condition:
[TempSet==23]. It is interpreted that when the power of the
air-conditioner is ON, if the API is executed, then the tem-
perature setting becomes 23.

Based on the key idea, we give a formal definition of a
HNS and integrated services in the following subsections.

3.2 Networked Appliances

Definition 3.1 (Property): A property is defined as a pair
of property name p and property type tp. p can take a value
a that must be of type tp.

Definition 3.2 (State): Let P = {py, ..., p,} be a given set of
properties. A state s over P is defined as {ay, ..., a,), where
a; is the (current) value of p;.

Table 1 summarizes properties for the ten appliances
introduced in Sect.2.27. In the table, a property type is de-
scribed as an enumeration type or an integer type with lower
and upper bounds. For instance, the air-conditioner has
properties Power and TempSet, where tPower = {ON, OFF}
and tTempSet ={18...28}. This implies that property Power
takes a value of ON or OFF, whereas TempSet takes an inte-
ger between 18 and 28. <ON, 23> represents a state of the

"Due to limited space, properties irrelevant to the SS; to S S
are omitted from the table.

IGAKI and NAKAMURA: MODELING AND DETECTING FEATURE INTERACTIONS AMONG INTEGRATED SERVICES OF HOME NETWORK SYSTEMS

Table 1 Appliance properties.
Appliance Appliance Property
Name Name | Type Name | Type
. .. Power tPower {ON,OFF}
AirConditioner TempSet tTempSet {18...28} (deg.)
Thermometer Power tPower {ON,OFF}
CurrentTemp tTemp {0...40} (deg.)
Power tPower {ON,OFF}
Input tInput {TV.DVD}
Speaker Clll)annel tCl?annel 25.1)
VolumeSet tVolumeSet | {0...50} (dB)
Light Poyver tPo.wer {ON,OFF}
BrightSet tBrightSet {0...600} (Ix)
Hluminometer Power tPower {ON,OFF}
CurrentBright | tBright {0...1000} (Ix)
Door DoorStatus tDoorStatus | {Open,Close}
Power tPower {ON,OFF}
{Received,
Calling,
Phone PhoneStat tPhoneStat
Connected,
Waiting}
DVD player Power tPower {ON,OFF}
TV Power tPower {ON,OFF}
Input tInput {TV,.DVD}
Blinds Power tPower {ON,OFF}
BlindsStat tBlindsStat {Open,Close}

air-conditioner, where the power is currently ON and the
temperature setting is 23 degree.

Next, we introduce a property formula to construct the
pre/post-conditions, which is a conjunction of Boolean for-
mulas over properties.

Definition 3.3 (Property Formula): Let P = {py, p2, ..., Pn}
be a given set of properties. A formulac = f, Af,, A Afp,,
where f), is any logical formula with respect to p;, is called a
property formula over P. Condp denotes a set of all property
formulas over P. For ¢ = f),, A fp, Ao A [y, T1p(0) = [y,
is called a projection of ¢ with respect to property p;.

For a given state {ay,...,a,), a property formula c is eval-
uated to be true or false, according to the (current) state.
Let us consider the example of the air-conditioner. Then,
¢ = [Power=="ON’ A TempSet > 20] is a property formula,
which is supposed to become true for a state <ON, 23>.
Also, [1pywer(c) = [Power=="0N’], which is a projection
of ¢ onto Power.

Note in Definition 3.3 that f,, doesn’t include any prop-
erties other than p;, which might limit the expressive power
of the property formula. However, we found that this was
not a fatal limitation in modeling many practical appliances,
including ten appliances introduced in Sect.2.2. Specifi-
cally, within any single appliance we did not find such prop-
erties p; and p; that p; and p; are strictly dependent on each
other, and that direct comparison and/or operation between
pi and p; are required. Further discussion on the expressiv-
ity of the property formula will be left for our future work.

Definition 3.4 (Networked Appliance): A networked ap-
pliance d is defined as a 4-tuple d = (P4, My, Prey, Posty),
where

e P;={pi1,..., pn}is a set of all properties of d.

825

e M, ={my,...,m}is a set of all methods of d.

e Prey: My — Condp, is a pre-condition function which
maps each method m; € M, to a property formula over
P,. m; can be executed only when Pre,(m;) is true.

e Posty : My — Condp, is a post-condition function
which maps each method m; € M, to a property for-
mula over P;. Post;(m;) becomes true immediately af-
ter m is executed.

A property p € P, (or a method m € My) of an appliance d
is denoted by d.p (or d.m, respectively).

Table 2 shows methods of the ten appliances in our ex-
ample. Each method is modeled by pre/post-conditions (R,
and W, will be defined later). In the table, **’ denotes a
don’t care value, e.g., the condition CurrentTemperature
== * becomes true as long as a certain value of the prop-
erty is available. For instance, the air-conditioner has a
method setTemperature(tTempSet temp), indicating that
“When the power is on, if the method is executed, the tem-
perature is set to the value specified by temp”.

To make such dynamics clearer, we define semantics of
the appliance model.

Definition 3.5 (Appliance Semantics): Let d = (P;, My,
Prey, Posty) be an appliance and s = {ay, ..., a,) be a state
over P;. For a method m € M,, we say that m is enabled
under s iff Pre,(m) is true for s. When m is enabled under s,
m can be executed. If m is executed, s is changed to the next
state s’ = {a}, ..., a,) so that Posty(m) becomes true for s’.
Properties that do not appear in Post;(m) keep their values
unchanged.

Let us consider an execution of a method
setTemperature(25) of the air-conditioner under state s; =
<ON,23>. Then, the method is enabled under s; since the
pre-condition [Power=="ON’] is true. If the method is exe-
cuted, s; moves to the next state s, = <ON, 25>, as specified
in the post-condition [TempSet==25], where the formal pa-
rameter temp is substituted by 25.

3.3 Environment

Appliances in a HNS share a home space with each other.
Hence, the appliances are tightly coupled with the environ-
ment of the home. For instance, the air-conditioner tries to
keep a comfortable room temperature, which implicitly up-
dates the temperature of the environment. Also, the ther-
mometer refers to the current temperature of the environ-
ment. Thus, the air-conditioner and the thermometer are in-
directly connected via the environment.

The environment of the home is an important factor in
feature interaction analysis (cf. [17], [18]). In this paper, we
formalize the environment as a global object which can be
referred to or updated by all appliances in the HNS. Specif-
ically, an environment object has a set of global properties
such as temperature, brightness and sound volume.

When a method m of an appliance is executed, these
environment properties are indirectly referred to or updated

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

826
Table2 Appliance methods.
[ApplianceName H ApplianceMethod | Pregq I Posty R, W,
AirConditioner setPower(tPower onoff) Power==onoff
setTemperature(tTempSet temp) Power=="ON’ TempSet==temp Temp
Thermometer setPower(tPower onoff) Power==onoff
getTemperature() Power=="ON’ A CurrentTemp==* Temp
setPower(tPower onoff) Power==onoff
Speaker setInput(tInput spInput) Power=="ON’ Input==spInput
setChannel(tChannel spChannel) Power=="ON’ Channel==spChannel
setVolume(tVolumeSet spVolume) | Power=="ON’ VolumeSet==spVolume Volume
vV setPower(tPower onoff) Power==onoff
setInput(tInput tvInput) Power=="ON’ Input==tvInput
DVD setPower(tPower onoff) Power==onoff
Light setPower(tPower F)noﬂ) Poyver::onoff .
setBrightness(tBrightSet 1x) Power=="ON’ BrightSet==Ix Bright
Tluminometer setPower(tPower onoff) ' Power==onoff ‘
getBrightness() Power=="ON’ A CurrentBright=="* Bright
Door getDoorStatus() Power=="ON’ A DoorStatus==*
Phone ringing() PhoneStat=="Recieved’ PhoneStat=="Calling’ Volume
connected() PhoneStat=="Calling’ PhoneStat=="Connected’ Volume
Blinds setPower(tP.ower onoff) querz=0n0ff .
setGate(tBlindsStat gateStat) Power=="ON’ BlindsStat==gateStat Bright,Temp

by m. For the environment, we adopt a loose modeling such
that we only care if m reads or writes some environment
properties. This loose modeling is because the impact of a
method to the environment properties are not as direct and
explicit as the impact to the appliance properties”. There-
fore, we cannot specify strict pre/post conditions with the
environment properties before/after the execution of m.

Definition 3.6 (Environment): Let D = {d,,d>,...,d;} be a
set of all appliances deployed in the HNS. Also, let M =
UgepMy, be a set of all methods of all appliances. Then, an
environment e is defined as a tuple e = (P,, R., W,), where

e P, is aset of all environment properties.

e R, is an environment read function M — 2, which
maps each method m € M into a set of environment
properties that are read by m.

o W, is the environment write function M — 2%, which
maps each method m € M into a set of environment
properties that are written by m.

The last two columns of Table 2 represent the environ-
ment read/write functions for every method. In our example,
we assume the following environment properties:

Temperature(Temp) : the degree of temperature of the
room.

Brightness(Bright): the intensity of brightness in the
room.

Volume: the sound volume in the room.

For instance, Temperature is designated in W, (AirConditio
ner.setTemperature(...)), which implies that setting the
temperature of air-conditioner can write (update) the current
temperature degree of the room.

3.4 HNS and Integrated Services

We are now ready to formalize a HNS. A HNS consists of a
set of appliances and an environment.

Definition 3.7 (Home Network System): A home network
system is defined as HNS = (D, e), where

e D={d,d,,..,d,} is a set of appliances.
e ¢ = (P, R,,W,) is an environment where the HNS is
deployed.

According to the definition, Tables 1 and 2 complete
the formalization of our example HNS.

As mentioned in Sect. 2.1, an integrated service can be
implemented by a set of invocations of APIs (i.e., appliance
methods) with a control flow. In this paper, we define an
integrated service as a sequence of appliance methods.

Definition 3.8 (HNS Integrated Service): Let HNS = (D, e)
be a given HNS. Then, an integrated service ss; is defined as
§§; = dﬂ mj ;diz.miz 5 e ;d,'k.m,‘k, where d,‘j e D, m;; € Md,j’
and ’;’ is a sequential operator.

As described in Sect. 2.1, the integrated services are in-
stalled on a home server (see Fig. 1). Thus, all the methods
in ss; are supposed to be executed by the home server.

It is our design choice to define an integrated service
by such a simple control flow without branch or loop. This
is because the service designer could be a home user who
cannot afford the complex service logic.

Indeed the HNS experts (e.g., vendors) may want to
design and validate more sophisticated services with com-
plex control flows (i.e., loops and branches), rather than
simple sequences. In such a case, one can use the program
analysis techniques (e.g.,[19]) that “unfold” the loops and
branches into a set of execution sequences. Thus, the pro-
posed method can deal with each derived sequence as an
integrated service.

Figure 2 shows implementations of the example service

For instance, the temperature setting of an air-conditioner is
not always equal to the temperature of a room.

IGAKI and NAKAMURA: MODELING AND DETECTING FEATURE INTERACTIONS AMONG INTEGRATED SERVICES OF HOME NETWORK SYSTEMS

827

1.3. Speaker.setPower(ON); || 2.3. TV.setlnput(DVD);
1.4. Speaker.setlnput(TV); 2.4. Blinds.setPower(ON);
1.5. Speaker.setChannel(2); || 2.5. Blinds.setGate(Close);
1.6. Speaker.setVolume(60);|| 2.6. Light.setPower(ON);
2.7. Light.setBrightness(5);

SS,:Auto-TV SS,:DVD Theater SS,:Coming Home Light SS,:Blinds Service
1.1. TV.setPower(ON); 2.1. DVD.setPower(ON); 3.1.Door.getDoorStatus(); 6.1.Blinds.setPower(ON);
1.2. TV.setlnput(TV); 2.2. TV.setPower(ON); 3.2 llluminometer.setPower(ON); 6.2.Blinds.setGate(Open);

3.3.llluminometer.getBrightness();
3.4 Light.setPower(ON);
3.5.Light.setBrightness(600);

SS,:Sleep Service

7.1.DVD.setPower(OFF);
7.2.TV.setPower(OFF);
7.3.Speaker.setVolume(0);

— 2.8. Speaker.setPower(ON);
$S§;:Ringing and Mute 2.9. Speaker.setinput(DVD);

S§§,:Coming Home Air-Con

7.4.Speaker.setPower(OFF);
7.5.lluminometer.setPower(OFF);

2.10.Speaker.setChannel(5.1);

5.1.Phone.ringing(); 2.11.Speaker.setVolume(80);

5.2.Phone.connected();
5.3.Speaker.setVolume(30);

4.1.Door.getDoorStatus();

4.2 . Thermometer.setPower(ON);
4.3. Thermometer.getTemperature();
4.4 AC.setPower(ON);
4.5.AC.setTemperature(26);

7.6.Light setBrightness(0);

7.7 Light. setPower(OFF);
7.8.AC.setPower(OFF);
7.9.Thermometer.setPower(OFF);
7.10.Blinds.setGate(Close);
7.11.Blinds.setPower(OFF);

Fig.2 Integrated services SS; to SS7.

scenarios from S S to SS7 discussed in Sect.2.2. For con-
venience, we put an index number for each method. Let us
take §S,: DVD Theater. First, the DVD player is turned on.
Then, the TV is turned on and its input mode is set to DVD
mode. Next, the blinds are closed and brightness of the light
is minimized. Finally, the speaker is configured for the DVD
setting. This sequence realizes the requirement of the DVD
theater service. As also seen in other services, our model
can express a quite reasonable range of practical integrated
services despite its simple control flow.

4. Modeling Feature Interaction Problem

Even if every integrated service achieves its requirement,
activating multiple services simultaneously may result in an
unexpected conflict, which is called feature interaction (FI).
Based on the proposed model, we formalize two kinds of
FIs among HNS integrated services, specifically appliance
interactions and environment interactions. Our basic idea is
to capture an FI as a conflict of appliance methods that are
incompatible with each other.

4.1 Appliance Interactions

When multiple integrated services simultaneously invoke
incompatible methods m; and m, of a common appliance
d, m; and m; conflicts. This causes an FI on the appliance
d, which we formalize as an appliance interaction.

Definition 4.1 (Appliance Interactions): Let HNS = (D, e)
be a given HNS, and ss; and ss; be a pair of integrated ser-
vices. Suppose that for an appliance d € D, ss; contains a
method d.m; and ss; contains a method d.m;. We say that
ss; and ss; cause an appliance interaction on d iff at least
one of the following conditions is satisfied:

Condition D1: There exists an appliance property p € Py
such that [], Post(m;) A [, Post(m;) = L (unsatisfi-
able), or

Condition D2: There exists an appliance property p € Py

Environment
i yfess)
oo D | .,
Blinglssta T .5' K nVirOnmen{-
ose)) 2.7:-' Iiteraction
Blinds Object Light Object”" ¢ 3.5

24

SS2:DVD Theater

2.1 DVD.setPower(ON)
2.2 TV.setPower(ON);
2.3 TV.setinput(DVD); 2.6
2.4 Blinds.setPower(ONJ:

A Appliance
2.5 Blinds.setGate(Closé), Interaction
2.6 Light.setPower(ON / 27 35

Zac\)

2.7 Light setBrightness(5) ; : it G
£.3 lluminometer.getBrightness():

2.8 Speaker.setPower(ON);
2.9 Speaker.setinput(DVD);
2.10 Speaker.setChannel(5.1);
2.1 Speaker.setVqume(BO):V

ght.setPower(ON);

Fig.3 Interactions between SS; and S S3.

such that [], Post(m;) A [], Pre(m;) = L (unsatisfi-
able).

Condition D1 characterizes the appliance interaction
as the unsatisfiability between two post-conditions. On the
other hand, Condition D2 represents the unsatisfiability be-
tween a pre-condition and a post-condition.

Suppose that DVD-Theater (S S,) and Coming Home
Light (SS3) in Fig.2 are simultaneously executed. Fig-
ure 3 depicts the situation. The figure contains four ob-
jects commonly shared by the two services. An arrow
represents an update (or a reference) to a property per-
formed by the method invocation. As shown in Fig.3,
SS, invokes Light.setBrightness(5), while S5 invokes
Light.setBrightness(600).

Thus, it can be seen a conflict in which value of bright-
ness should be set to the light. This is exactly FI-(a)
in Sect. 1. According to Table 2, FI-(a) is characterized
by two unsatisfiable post-conditions; ([BrightSet==5] A
[BrightSet==600]) = L (unsatisfiable), as defined in Con-
dition D1. Note that projection [], allows property-wise
checking of the satisfiability.

Let us introduce another example with DVD The-
ater (§S,) and Sleep (SS7). TV.setInput(DVD) of SS,
requires in the pre-condition that the TV is switched on

828

([power==0N]). However, TV. setPower (OFF) of §'S7 updates
the value of the property power into OFF as defined in its
post-condition, which disables TV.setInput(TV). As a re-
sult, S S5 is suspended. This FI occurs since a pre-condition
of S5, and a post-condition of S S are unsatisfiable simul-
taneously. Condition D2 covers such cases.

Note that Condition D1 and D2 can be tested even
if a HNS contains multiple appliances in the same
kind. For instance, suppose that a HNS contains two
lights Lightl and Light2, and that one service exe-
cutes Lightl.setPower(ON) and another service does
Light2.setPower (OFF). In this case, these methods do
not cause appliance interaction, since Lightl.power and
Light2.power are independent.

4.2 Environment Interactions

Even if methods m; and m, do not share the common ap-
pliance, FIs may occur indirectly via the environment. The
environment interaction arises when m; and m; try to access
common environment properties.

Definition 4.2 (Environment Interactions): Let HNS =
(D, e) be a given HNS, and ss; and s be a pair of integrated
services.Suppose that for a pair of appliances d,d” € D
(d # d’), ss; contains a method d.m; and ss; contains a
method d’.m;. We say that ss; and ss; cause an environ-
ment interaction iff at least one of the following conditions
is satisfied:

Condition E1: W.(m;) N W.(m;) # ¢, or
Condition E2: R.(m;) N W.(m;) # ¢.

Condition El reflects a race condition between two
“writes” on the common environment properties. Condition
E2 specifies non-interchangeable “read” and “write” on the
common environment properties.

Let us see the environment interaction among DVD-
Theater (§S,) and Coming Home Light (S S 3) using Fig. 3.
Illuminometer.getBrightness() in S ;3 reads the environ-
ment property Brightness to obtain the current brightness
of the room. On the other hand, Blinds.setGate(Close)
in §S, makes the room darker, that is, the method
writes environment property Brightness. If the two
methods occur simultaneously, SS3 may fail to set op-
timal brightness to the light. This is exactly FI-(b)
in Sect.1. According to Table 2, this FI occurs since
the two methods access common environment property
Brightness. That is, R,(I11luminometer.getBrightness())
N W,(Blinds.setGate(Close)) = {Brightness} # ¢.
Hence, Condition E2 applies to the FI.

Another interesting example is the FI among the Com-
ing Home Air-Con (§'S4) and the Blinds (SS¢). Although
no appliance is shared by the two services, the services
cause environment interactions. Since opening the blinds
could heat the room, air-conditioning may not work as ex-
pected. This FI can be also characterized by Condition E1.

The definition of the environment interactions would

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

be strengthened by introducing the direction of the effects to
the environment properties, so that only methods with the
opposite environmental effects cause an interaction. How-
ever, even if the direction is the same, two methods may
yield excessive effects beyond the user’s intension. Thus,
whether or not each instance of interaction is desirable heav-
ily depends on user’s requirements. Therefore, we here aim
to define and detect the environment interaction in a broad
sense, simply by using the read/write functions. We assume
that the interpretation and the resolution of the interactions
are performed after the detection process, which are beyond
this paper.

5. Detecting Feature Interactions

Based on the formalization, we develop a method that de-
tects FIs among given integrated services. There are two
methods for the FI detection: offfine and online methods.
The offline detection is to detect all possible FIs for all pairs
of given integrated services, assuming that the detection pro-
cess is conducted before deploying the integrating services.
On the other hand, the online detection is to conduct de-
tection process during runtime, which dynamically manages
any FI when it actually occurs.

5.1 Offline FI Detection

We start with the offline detection method. The offline de-
tection is to identify all the potential FIs before actually de-
ploying the services in the home server.

Offline FI Detection

Input: A home network system HNS = (D, e), and a set of
integrated services ss1, 552, ..., S,

Output: All possible pairs of appliance methods that cause
appliance or environment interactions.

Procedure: For any pair of methods m and m’ contained in
ss; and ss;, respectively, evaluate Conditions D1 and
D2 for appliance interactions, and Conditions E1 and
E2 for environment interactions.

Proposition P1: For the given HNS = (D, e), the offline FI
detection can detect all appliance interactions and environ-
ment interactions between every pair of ss; and ss; (i # j),
which is independent of the contents of service scenarios or
the combination of appliances.

Proof: According to Assumption Al, the environment ob-
ject e is uniquely determined, and every appliance d com-
monly shares e. According to Assumption A2, for every
appliance d € D, there exists a real appliance in HNS corre-
sponding to d.

By Definition 3.4, every method m is defined by a pre-
condition and a post-condition. Hence, in the detection pro-
cedure, for a pair m and m’ of methods in ss; and ss; re-
spectively, it is possible to evaluate Conditions D1 and D2.
According to Definition 4.1, satisfying either D1 or D2 leads
to the appliance interaction. Note that the evaluation of D1
and D2 does not depend on specific appliances or methods.

IGAKI and NAKAMURA: MODELING AND DETECTING FEATURE INTERACTIONS AMONG INTEGRATED SERVICES OF HOME NETWORK SYSTEMS

Since D is a finite set and the number of service scenarios is
finite, the same evaluation can be applied to every pairs of
methods within every pair of services. Thus, all appliance
interactions can be detected.

By Definition 3.6, the influence of each appliance
method m to e is defined as R.(m) and W.(m). Hence, in
the detection procedure, for a pair m and m’ of methods in
ss; and ss; respectively, it is possible to evaluate Conditions
El and E2. According to Definition 4.2, satisfying either
E1 or E2 leads to the environment interaction. By the same
discussion, all environment interactions can be detected.

Finally, according to Assumption A3, we should note
that we do not detect three-way interactions. Thus, the de-
tection procedure conforms Proposition P1.

5.2 Online FI Detection

Even if the offline detection says that services ss; and ss;
cause an FI, the FI does not actually occur unless ss; and s
are not executed simultaneously.

Therefore, we propose the online FI detection method
based on a service life cycle of the integrated services.

Definition 5.1 (Service Life Cycle): Let ss be any inte-
grated service. The life cycle of ss is defined by a state tran-
sition machine L, consisting of two states: in operation
and terminated. When ss is deployed on the HNS, Ly, is
generated and initialized at terminated state. On receiving
an execution request of ss, ss executes its appliance meth-
ods and Lg, changes the state to in operation. When a
termination request is received, ss stops its execution and
the state moves back to terminated state. We say that ss
is terminated (or in operation) iff Ly, is in terminated (or
in operation, respectively) state.

We suppose that the service life cycle is managed
within the home server, and that an execution (or termina-
tion) request is triggered by an event such as user’s request,
a sensor event, a timer event, etc.

The online FI detection aims to identify FIs during run-
time just before the FIs occur. For this, we extend Defini-
tions 4.1 and 4.2.

Definition 5.2 (Interactions During Runtime): Let HNS =
(D, e) be a given HNS, and ss; and ss; be a pair of integrated
services. Then, we say that ss; and ss; cause an appliance
(or environment) interaction during runtime, iff ss; and ss;
cause an appliance interaction (or environment interaction,
respectively), and both ss; and ss; are in operation.

To achieve the online detection, we need to check
which service is in operation. To do this, we employ a spe-
cial module called FI detection module. This module uses a
database called method pool to identify the methods in oper-
ation. When a service is in operation, the methods of the ser-
vice are registered in the method pool through the module.
When the service terminates, the methods are removed from
the pool. When a new service is activated during the method
pool is not empty, checking FIs between each method of the

829

new service and the ones in the pool is performed.

Online FI Detection
Input: A home network system HNS = (D, e), and a set of
integrated services ssi, 52, ..., S,
Output: All possible pairs of appliance methods that cause
appliance or environment interactions during runtime.
Procedure:
Step 0: FI detection module FIDM initializes the method
pool MP to be empty.
Step 1: A Home Server HS accepts activation of a service
$8; = Mi1; M5 ... Mig.
Step 2: HS Consult FIDM, and FIDM checks whether
pooled methods in M P are.

e If MP is empty, go to Step 4.
e If MP is not empty, i.e., MP already contains
methods m’ m’iz, m;.l, go to Step 3.

Jr
Step 3: For each pair of m;, and m}v 1 <x<kI1K<
y < 1), FIDM evaluates Conditions D1 and D2 (or E1
and E2) for appliance (or environment, respectively)

interactions.

e If any interactions are found, arbitrary FI resolu-
tion scheme (we introduce some schemes in 6.3)
is executed. The scheme decides which methods
should be executed. Based on the result of FI
resolution, FIDM registers and removes appliance
methods in MP. Then, the HS executes the meth-
ods one-by-one, and go to Step 1.

¢ If no interaction is found, go to Step 4.

Step 4: FIDM registers all m;,(1 < x < k) in MP. Then,
HS executes the methods one-by-one. Go to Step 1.

5.3 Case Study
5.3.1 Offline Detection

We have conducted a case study with offline interaction de-
tection. For this experiment, we have implemented a tool
using Java (J2SE1.4.2), comprising about 1,500 lines of
code with 5 classes. The tool provides four kinds of op-
erations, checkD1(m, m"), checkD2(m, m’), checkE1(m, m’),
checkE2(m, m"), which respectively checks Conditions D1,
D2, E1, and E2 for a given pair of appliance methods m and
m’. Using these four operations, the tool detects all FIs for
given service scenarios S'S and S S”.

In this case study, we took a HNS defined in Ta-
bles 1 and 2, and seven integrated services SS 1,5 5>, ...,557
shown in Figure 2, as the input.

Table 3 (a) shows a total 43 appliance interactions de-
tected, whereas Table 3 (b) enumerates 24 environment in-
teractions. Each entry represents a set of pairs of methods
causing FIs (each index corresponds to the one in Figure 2).
It can be seen in Table 3 (a) that two appliance interactions
explained in Sect. 4.1 are well detected as the method pairs
(2.7,3.5) and (2.3, 7.2). Also, two environment interactions

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

830
Table 3 Results of offline interaction detection.
(a) Appliance Interactions
SS1 ss2 ss3 [ss4] sS5 SS6 §87
(1.2,2.3)(1.4,2.9) (11,7.2)(1.2,7.2)(1.3,7.4)(1.4,7.4)(1.5,7.4)
sst (1.5,2.10)(1.6,2.1 (16,5.3) (1.6,7.3)(1.6,7.4)
(21,7.1)(2.2,7.2)(2.3,7.2)(2.4,7.9)(2.5,7.8)
ss2 (2.7,3.5) (2.11,5.3) |(2.5,6.2) |(2.5,7.9)(2.6,7.7)(2.7,7.6)(2.7,7.7)(2.8,7.4)
(2.9,7.4)(2.10,7.4)(2.11,7.3)(2.11,7.4)
sS3 (3.2,7.5)(3.3,7.5)(3.4,7.7)(3.5,7.6)(3.5,7.7)
sS4 (4.2,7.9)(4.3,7.9)(4.4,7.8)(4.5,7.8)
SS5 (5.3,7.3)(5.3,7.4)
SS6 (6.1,7.11)(6.2,7.10)(6.2,7.11)
§S7
(b) Environment Interactions
ss1[ss2 SS3 Ss4 SS5 SS6 SS87
Ssi (1.6,5.1)(1.6,5.2)
ss2 52'5'3'23(2'5’3'5) (2.5,4.3)(2.5,4.5)|(2.11,5.1)(2.11,5.2)((2.7,6.2) (2.5,7.6)(2.7,7.10)
(3.3,7.6)(3.3,7.10)
ss3 (33,62)3562)| 3’5’7 1)
ss4 (4.3,6.2)(4.5,6.2)[(4.3,7.10)(4.5,7.10)
SS5 (5.1,7.3)(5.2,7.3)
SS6 (6.2,7.6)
SS7
| Home server | | Fi Detecton Moauie || Wethoa Pool | e s methods are registered to the empty method pool.
:UserB : UserA Vs R ,)
T Light,etc) Next, before the User A terminates SS,, User B ac-

1 Initialize(MP is emg)f‘

2'Activate(SSZ(DVDT eater Service)) H
2.1: Consult(SS2)y, | 5 1 1. getCurrentMethbdList()

oK ‘Regi 3
2.2: Execute(SS2)

w

Activate(5S6(Blin Se:rvice))
3.1: Consult(SS

1.1: getCurrentMet‘h"dL\st()

Current Pooled MethodList(SS2)

; 3.1.2: detectFI(SS2,5S6)

Detected Fls(combipations of method)
32 Noli%eieded Hls| H
SS6:Blinds.setGate(Open) ﬁ
SS2:Blinds.setGate(Close)
T3'3 NC';t'fY(demdedHils) SS6:Blinds.setGate(Open) L
i SS2:Light.setBrightness(5) i

Fig. 4

Sequence diagram of online detection example.

illustrated in Sect. 4.2 are covered as (2.5, 3.3) and (4.5, 6.2)
in Table 3 (b). Through a careful investigation, we confirm
that all the detected FIs are reasonable and consistent against
our formalization. The time taken for the tool to detect all
the FIs among the seven services was 4.03 seconds, using a
PC with Pentium III-M 933 MHz, 512 MB. This is efficient
enough to conduct the offline detection.

5.3.2 Online Detection

Figure 4 shows an example of the online FI detection, where
S§S, and §S¢ are executed in this order by User A and User
B. In the example, the home server communicates with the
FI Detection Module which evaluates the conditions for FIs
for given pairs of methods. The Fig. 4 shows a detailed se-
quence diagram from Method Pool Initialization until noti-
fication of detected FIs between SS2 and SS6.

First, S§, is activated by User A, and all the

tivates SS¢. Now, each method of SS¢ is examined
against the ones in the pool by the detection mod-
ule. The detection module evaluates the conditions,
and successfully detects an appliance interaction (S,
Blinds.setGate(Close), SS¢ : Blinds.setGate(Open)), and
an environment interaction (SS, : Light.setBrightness(5),
SS¢ : Blinds.setGate(Open)) during runtime. After these
results of FI detection, the Home Server notifies them to
users. Actually, the FIs detected by online detection vary de-
pending on timing of the service activation and usage time
of services. In this example, we imply a life-cycle of the
services is expressed by the user.

For the performance evaluation, we have implemented
the FIDM based on the proposed method, using the Java
Web service (Apache AXIS2 + Tomcat 5.5). Experimen-
tal evaluation was done on a mid-range server (Pentium 4,
2.6 GHz). It was shown that the time taken for the FIDM to
perform the detection algorithm (from Step 1 to Step 4) was
around 80 milliseconds per a single execution, on average.

6. Evaluation
6.1 Performance

As described in the end of Sect.5.3.1, the time needed for
the off-line FI detection among seven practical services was
just 4.03 second, by using the mid-class PC. We believe
that the time is sufficiently small and feasible for the practi-
cal settings, since the off-line detection detects all potential
FIs at once. In the online detection, FIDM poses a slight
overhead (» 80 msec.) to the execution of HNS integrated
services as shown in Sect. 5.3.2. However, we consider it to
be quite small compared to the total execution time of the
integrated service.

IGAKI and NAKAMURA: MODELING AND DETECTING FEATURE INTERACTIONS AMONG INTEGRATED SERVICES OF HOME NETWORK SYSTEMS

6.2 Advantage and Limitation

We have presented FI detection methods on top of the solid
HNS model. Since the proposed model does not depend on
any specific platform or HNS protocols, one can conduct FI
detection in early stages of service development efficiently.

Also, we proposed both offline and online detection
methods. As seen in Sect. 5.3, the offline detection identifies
all the potential FIs. Therefore, we consider that the offline
method is quite useful to prepare in advance an appropriate
FI resolution scheme (See Sect. 6.3) for every potential FI.
On the other hand, the online detection should be used in
actual service operations, since the system should not spare
efforts FIs that do not actually occur. If the online method
detects Fls, then the system dynamically dispatches an FI
resolution scheme that has been prepared beforehand.

A limitation is that our model currently supports the
sequential operator only for describing integrated services.
This fact may limit the variety of services. However, as we
allow more complex control flows, we need much more ef-
fort to assure the reliability of even a single integrated ser-
vice. Thus, the ease of analysis and the expressive power of
the model are in a tradeoff relation. We want to investigate
this issue for the future research.

In this paper, our HNS model to detect feature inter-
actions is built on a premise that the HNS is embedded in
only one room. Actually, a HNS has multiple rooms. If
the rooms are independent completely, that is, no environ-
ment property is affected by appliances allocated to different
rooms, our model can correspond to the HNS. However, if
any environment property is written by the method of appli-
ances in the different rooms, our model should be extended
to make the connection between the appliance (or environ-
ment property) and the location information.

6.3 Resolution of Feature Interaction

The proposed formalization of the HNS and integrated ser-
vices allows us to take various approaches for resolving Fls.
Here we present a brief sketch of resolution schemes. Fur-
ther discussion on the interaction resolution schemes is left
to our future research.

(a) Prioritize Services: Assign static priorities to ser-
vices [17]. If a pair of service scenarios causes an interac-
tion, then all conflicting methods in the service with lower
priority are aborted.

(b) Prioritize Methods: Assign static priorities to methods.
When a pair of methods conflict with each other, methods
with a lower priority are aborted.

(c) Prioritize Users: Assign static priorities to users. A
user with a higher priority can take precedence in executing
services over the one with a lower priority.

(d) Compromise Services: Find a compromise between the
conflicting services during runtime. In the service scenario,
set a weight of importance to each method. For example,
methods related to the DVD player, the TV, and the speaker

831

are important for DVD Theater service, but the ones for the
light and the blinds may be optional. When an interaction
occurs, the service is compromised so that at least important
methods are executed while optional methods are aborted.
(e) Compromise Methods: Find a compromise be-
tween the conflicting methods during runtime. For
example, a conflict between Speaker.setVolume(56)
and Speaker.setVolume(18) would be compromised to
Speaker.setVolume (30).

(f) Negotiate Among Users: Find a solution acceptable for
users by conducting a negotiation. This approach is quite
realistic as it is usually done manually in our daily life. A
smarter approach will involve user agents which perform an
automatic negotiation and resolution based on the user’s pol-
icy and/or preference.

(g) Ask User: If the above resolution methods cannot derive
any reasonable solution, this activity is chosen. When an
FI is detected, ask the user(s) to determine manually how
the interaction should be dealt with. This approach is not
very elaborated but is some kinds of reasonable. Though it
was taken in Step 3 of the proposed online detection, several
options should be proposed to the user to support making
decision.

6.4 Related Work

Kolberg et al. firstly addressed the feature interaction prob-
lem in the HNS [17], [20]. These authors regard each HNS
component as a resource, and abstract the appliance oper-
ations as resource locking. Then, Fls are characterized as
a resource competition, where different services try to lock
a common resource in incompatible locking mode. Since
all appliance operations are abstracted by nameless locking,
the method achieves a light-weight runtime FI detection.
However, the method cannot identify the concrete pair of
appliance operations that actually cause FIs. The proposed
method achieves finer-grained FI analysis in the sense that
it can derive concrete appliance operations in conflict. Also,
the proposed method has higher modeling fidelity in the
sense that it can describe Kolberg’s definition of FIs. Specif-
ically, Condition D1 and E1 can capture Kolberg’s MAI and
STI interactions respectively, in more detailed level of ab-
straction. Also, Conditions D2 and E2 cover SAI and MTI.
Thus, the proposed method can be used to implement their
runtime interaction avoidance.

Matsuo and Pattara [21], [22] proposed an FI detection
method for HNS services by means of the SPIN model
checker. Taking our original definitions[9] (i.e., the ap-
pliance and environment interactions) into account, this
method represents the conditions of FIs in LTL formulas,
and verifies the formulas against HNS services described in
PROMELA. Unlike ours, this method allows branches and
loops in the service description, and can give complete proof
within the model. However, this method is supposed to be
used in only early stages of the development. Also it re-
quires user’s high expertise in LTL and PROMELA, which
might be hard for practitioners. Our detection method is

832

much simpler, in the sense that it considers only APIs used
in the services, but does not focus the control flow among
the APIs. Because of the simplicity, it can be applied to a
wide range of implementation languages, although the of-
fline detection may yield false negatives. However, this
problem can be complemented by the proposed online de-
tection method.

Loke presented a modeling framework for HNS [23],
where each appliance is a self-contained service component.
The idea is to encapsulate the platform-specific issues in the
service component, and then to construct integrated services
as workflows. Although the concept for the modeling is sim-
ilar to ours, the method does not address the feature interac-
tion problem.

As far as is reported, explicit consideration of environ-
mental factors in the control application was first introduced
by Metzger [18]. Within the domain of embedded control
systems, their approach captures the static structures of re-
quirements and systems by dependency graphs, and con-
ducts offline interaction detection for systems under devel-
opment. Our method differs in targeting the HNS where the
appliances and services can be dynamically added and mod-
ified. Hence, the proposed framework achieves modularity
of every device (appliance) in an object-oriented fashion.

There have been methods that adopt some object-
oriented approaches for the FI problem. Gibson et al. [24]
presented a requirement model called fair objects. The
model defines liveness properties that each object must sat-
isfy eventually. When multiple objects are composed, the
properties derive a specification to prevent some types of
FIs (deadlock, disability of features). Prehofer et al. [25] ex-
ploited a concept of inheritance in object-oriented program-
ming, and avoids FIs in incremental feature development.

These methods are useful for the purpose of FI pre-
vention, in such a situation that developers can design, im-
plement and modify all the objects in the system. Thus,
the methods might be used for each vendor to circumvent
FIs among features in individual appliance. However, every
HNS appliance is a self-contained object (possibly under
a multi-vendor environment). It is difficult to compromise
requirements over multiple appliance objects, or to modify
specification and implementation of the appliances to pre-
vent FIs. Moreover, it is impossible to predict all possible
combinations of appliances and scenarios within the inte-
grated services. In such settings, we need a framework of FI
detection for given integrated services, as we contributed in
this work.

6.5 Applicability of Conventional Telephony-Based Meth-
ods

A number of methods for FIs in the telephony domain have
been proposed so far [6]. However, we consider it not easy
to apply these conventional methods directly to the HNS do-
main, due to the following two reasons.

Firstly, telephony services are provided on the homo-
geneous system, where all terminals (i.e., telephones) have

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

the equivalent functionalities. Therefore, the conventional
methods introduce state predicates and events commonly
used for all terminals, and parameterize them to represent
the actual state of every user. Thus, most conventional meth-
ods contain the service specification only, but not include
any terminal specification. On the other hand, the HNS is a
heterogeneous system, where different types and vendors of
appliances are deployed. Hence, it is quite difficult to intro-
duce the common predicates and events in the HNS. There-
fore, in the proposed framework, we introduce the object
model as appliance specification. Every actual appliance
is specified by an appliance object model with properties,
methods, and impacts to environment. This allows us to ex-
press heterogeneity of HNS quite naturally.

Secondly, in HNS we have to take account of not only
individual terminals (i.e., appliances), but also their sur-
rounding environment, as discussed in Sect.3.3. Thus, the
proposed environment interaction is the quite essential prob-
lem in HNS, but does not exist in the conventional telephony
domain.

However, we found some techniques quite promising
for implementation of the proposed method. For example,
the approaches with logic programming (e.g.,[7]) and/or
structural analysis of rule-based methods would enable ef-
ficient pre/post-conditions checking of the appliance meth-
ods. A negotiating agent approach [8] would also help to im-
plement an automatic interaction resolution for the scheme
(h) in Sect. 6.3. Furthermore in [26], Kawaguchi et al. dis-
cussed the terminal assignment problem for the HNS, which
addresses how to bind the appliance names and actual ap-
pliances. This method is quite promising to relax our As-
sumption A2 (see Sect.2.3), which extends the proposed FI
detection method for dynamic HNS.

7. Conclusion

In a smart home environment, various appliances are con-
nected to a home network and provide users with value-
added services such as appliance integration. In this paper,
we have presented a framework for detecting feature inter-
actions (FIs) in appliance integration services. We first for-
malized the HNS with object-oriented modeling. Then, the
appliance interaction and the environment interaction were
defined. Finally, we presented offline and online FI detec-
tion methods.

Several research directions present themselves. We are
currently investigating efficient applications of the resolu-
tion schemes. Especially important is evaluating the fea-
sibility of the suggested resolution schemes from several
viewpoints: system-view, service-view, and user-view and
so forth. Adaptation of the conventional techniques in tele-
phony to the HNS integrated services is also an interesting
topic for further study.

Acknowledgements

This research was partially supported by: the Japan Ministry

IGAKI and NAKAMURA: MODELING AND DETECTING FEATURE INTERACTIONS AMONG INTEGRATED SERVICES OF HOME NETWORK SYSTEMS

of Education, Science, Sports, and Culture, Grant-in-Aid
for Young Scientists (B) (No.21700077, 20700027), and by
JSPS and MAE under the Japan-France Integrated Action
Program (SAKURA).

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

[9]

[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

Panasonic Electric Works Co., Ltd., “Lifinity,”
http://denko.panasonic.biz/Ebox/kahs/, 2008.

T. Tamura, T. Togawa, M. Ogawa, and M. Yoda, “Fully automated
health monitoring system in the home,” Med. Eng. Phys., vol.20,
no.8, pp.573-579, 1998.

TOSHIBA Consumer Marketing Corp., “Toshiba home network —
feminity,”
http://www?3.toshiba.co.jp/feminity/feminity_eng/index.html, 2005.
T. Yamazaki, “Beyond the smart home,” Proc 2006 Interna-
tional Conference on Hybrid Information Technology (ICHIT ’06),
pp-350-355, Nov. 2006.

Y. Tan and Digital Home Network Forum, Ubiquitous Technology:
Home Network and Information Appliances, Ohmsha, 2004.

M.D. Ryan, L.G. Bouma, E. Magill, et al., ed., Feature Interaction
in Telecommunications, IOS Press, Amsterdam, 1992-2005.

N. Gorse, L. Logrippo, and J. Sincennes, “Formal detection of fea-
ture interactions with logic programming and lotos,” Journal of Soft-
ware and System Modeling, vol.5, pp.121-134, April 2005.

N.D. Griffeth and H. Velthuijsen, “The negotiating agents approach
to runtime feature interaction resolution,” Proc. Second Int’l Work-
shop Feature Interactions in Telecommunications Systems, Amster-
dam, NL, pp.217-235, IOS Press, Amsterdam, May 1994.

M. Nakamura, H. Igaki, and K. Matsumoto, “Feature interactions
in integrated services of networked home appliances -an object-
oriented approach-,” Proc. Int’l. Conf. on Feature Interactions in
Telecommunication Networks and Distributed Systems (ICFI’05),
Leicester, UK, pp.236-251, IOS Press, Amsterdam, June 2005.
DLNA, “Digital living network alliance,” http://www.dlna.org,
2007.

ECHONET Consortium,
http://www.echonet.gr.jp/english/index.htm, 1997-2004.

OSGi Alliance, http://www.osgi.org/, 2006.

X-10, http://www.x10pro.com/, 2006.

HAVi, http://www.havi.org/, 2004.

UPnP Forum, http://www.upnp.org/, 2007.

J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and C. Marin, “A
dynamic-soa home control gateway,” Proc. Int’l Conf. on Service
Computing (SCC’06), pp.18-22, Sept. 2006.

M. Kolberg, E.H. Magill, and M. Wilson, “Compatibility issues be-
tween services supporting networked appliances,” IEEE Commun.
Mag., vol.41, no.11, pp.136-147, Nov. 2003.

A. Metzger, “Feature interactions in embedded control systems,”
Comput. Netw., vol.45, no.5, pp.625-644, 2004.

K.K. Aggarwal, Y. Singh, and J.K. Chhabra, “A dynamic software
metric and debugging tool,” ACM SIGSOFT Software Engineering
Notes, vol.28, no.2, pp.1-4, March 2003.

M. Wilson, M. Kolberg, and E.H. Magill, “Considering side effects
in service interactions in home automation - an online approach,” in
Feature Interactions in Software and Communication Systems IX,
ed. L. du Bousquet and J.L. Richier, pp.172-187, 10S Press, Ams-
terdam, 2007.

P. Leelaprute, T. Matsuo, T. Tsuchiya, and T. Kikuno, “Detect-
ing feature interactions in home appliance networks,” Proc. 9th
Int’l Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD 2008),
pp-895-903, Aug. 2008.

T. Matsuo, P. Leelaprute, T. Tsuchiya, and T. Kikuno, “Verifying
feature interactions in home network systems,” IPSJ Journal, vol.49,
n0.6, pp.2129-2143, June 2008.

833

[23] S.W. Loke, “Service-oriented device ecology workflows,” Proc. 1st
Int’l Conf. on Service-Oriented Computing (ICSOC2003), Trento,
Italy, pp.559-574, Springer-Verlag, Berlin, Dec. 2003.

[24] P. Gibson and D. Méry, “Fair objects,” Proc. OT98 (COTSR), pp.1-
16, Oxford, UK, April 1998.

[25] C. Prehofer, “An object-oriented approach to feature interaction,”
Feature Interactions in Telecommunications Networks IV, ed. P.
Dini, R. Boutaba, and L. Logrippo, pp.313-325, 10S-Press, Ams-
terdam, June 1997.

[26] K. Kawaguchi and T. Ohta, “A study on a method for detecting
feature interactions in home network,” IEICE Technical Report,
vol.107, no.88, pp.39-42, June 2007.

Hiroshi Igaki received the B.E. degree
(2000) in Department of Electrical and Electron-
ics Engineering from Kobe University, Japan,
and the ML.E. degree (2002) and D.E. degree
(2005) in Information Science from Nara Insti-
tute of Science and Technology, Japan. In 2005,
he worked for the Graduate School of Informa-
tion Science at Nara Institute of Science and
Technology, Japan. He joined Faculty of Math-
ematical Sciences and Information Engineering,
Nanzan University, Japan. in 2006. He is cur-
rently an Assistant Professor of Graduate School of Engineering at Kobe
University from 2007. His research interests include communication sup-
port in software development, web services and service-oriented architec-
ture. He is a member of the IEEE, ACM, and IPSJ.

Masahide Nakamura received the B.E.,
M.E., and Ph.D. degrees in Information and
Computer Sciences from Osaka University,
Japan, in 1994, 1996, 1999, respectively. From
1999 to 2000, he has been a post-doctoral fel-
low in SITE at University of Ottawa, Canada.
He joined Cybermedia Center at Osaka Univer-
sity from 2000 to 2002. From 2002 to 2007, he
worked for the Graduate School of Information
Science at Nara Institute of Science and Tech-
nology, Japan. He is currently an associate pro-
fessor in the Graduate School of Engineering at Kobe University. His re-
search interests include the service-oriented architecture, Web services, the
feature interaction problem, V&V techniques and software security. He is
a member of the IEEE and ACM.

