
Considering Online Feature Interaction
Detection and Resolution for Integrated

Services in Home Network System

Masahide NAKAMURA a,1, Hiroshi IGAKI a, Yuhei YOSHIMURA a and
Kousuke IKEGAMI a

a Graduate School of Engineering, Kobe University, Japan

Abstract. This paper presents an online detection and resolution method for fea-
ture interactions among integrated services in home network systems. To achieve
reasonable online detection and resolution, we introduce three new concepts in this
paper. Specifically, (a) activation which explicitly defines the execution lifetime of
services, (b) mandatory methods which guarantees essential and optional opera-
tions in services, and (c) suspend/resume mechanism which allows lower-priority
services to sleep temporarily and to wake up later when all conflicting services are
terminated. A case study demonstrates the effectiveness of the proposed method.

Keywords. home network system, online resolution, activation, mandatory methods,
suspend/resume mechanism

1. Introduction

The home network system (shortly, HNS) is a system comprised of networked home ap-
pliances and sensors, which realizes the next-generation ubiquitous smart home [10][11].
In the HNS, multiple appliances are orchestrated together to achieve value-added inte-
grated services (or just simply called services). We here introduce some examples:

DVD Theater Service(DVD-T): This service allows a user to watch movies in a theater-
like atmosphere. When activated, a DVD/HDD recorder is switched on, a TV is
turned on in DVD mode, a curtain is closed, lights are darken, 5.1ch speakers are
selected with appropriate sound volume, and the recorder plays back the movie.

Coming Home Service(CH): Integrating a door sensor and lights, the service supports
a user to get into the house. When a door sensor notices that the user comes home,
lights are automatically turned on while the user is entering the room.

Leaving Home Service(LH): Integrating the existing appliances, the service prevents
a user from forgetting turning off appliances when leaving home. When the user
presses a button at the entrance, all appliances are turned off to save energy.

1Corresponding Author: 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan; E-mail: masa-
n@cs.kobe-u.ac.jp .

masa-n
This paper was accepted for publication in the 10th International Conference on Feature Interactions (ICFI2009) in June 2009. The page number is not yet assigned for this version.

masa-n

As is easily imagined, feature interactions (FIs, for short) occur among these ser-
vices if they are used simultaneously. We describe some example scenarios.

FI Scenario 1 (DVD-T & CH) While user A is watching a movie with DVD-T, if user
B comes home, CH turns on the lights. This disturbs the theater atmosphere.

FI Scenario 2 (CH & LH) User C comes home and presses the button of LH at the
same time. It is non-deterministic whether or not the lights should be turned on.

FI Scenario 3 (LH & DVD-T) User D leaves home and presses the button of LH al-
though user E is watching a movie. The TV and the DVD/HDD recorder are shut-
down, which makes E angry.

In our previous work [7], we have proposed an object-oriented framework that for-
malizes FIs within the HNS integrated services. In the framework, we have defined two
kinds of FIs, appliance interaction and environment interaction. Intuitively, the appli-
ance interaction refers to a situation where two services share the same appliance in a
conflicting way. For instance, in Scenario 3, DVD-T wants the TV and DVD/HDD to be
active, whereas LH wants to shutdown them. We can also see the appliance interactions
on some lights in Scenarios 1 and 2. On the other hand, the environment interaction oc-
curs when two services, which do not necessarily share common appliances, conflict via
environment properties. For instance, in Scenario 1, even if DVD-T and CH are using
different lights, a conflict occurs on brightness in the room. Using the framework, we
have then proposed an offline FI detection method, and some naive resolution schemes
based on priorities over services.

However, on implementing the online FI detection and resolution mechanism in a
real HNS [8][9], we have found that the previous framework could not handle some FI
scenarios reasonably, since the following issues were not sufficiently considered.

P1: How do we detect FIs during runtime, considering timing of service execution?
P2: How do we define essential or compromised service operations in FI resolution?
P3: How do we deal with lower-priority services in FI resolution?

In this paper, we aim to propose a new online FI detection and resolution scheme
for the HNS integrated services, taking the above P1-P3 into account. To achieve this,
we extensively introduce the following three new notions: (a) activation, (b) mandatory
methods, and (c) suspend/resume mechanism.

First, the activation defines the execution lifetime of services to cope with P1. Man-
aging the activation for each service enables more precise FI detection during runtime.
Second, the mandatory methods identify essential or optional operations in each service,
which addresses P2. A service can run only when all mandatory methods are executable.
In other word, even if some optional methods are suppressed by another higher-priority
service, the service can continue to operate in a compromised mode. Finally concern-
ing P3, the suspend/resume mechanism provides a fair and gentle treatment for lower-
priority services. When an FI occurs, the mechanism allows lower-priority services to
sleep temporarily, and to wake up after all conflicting services are terminated.

Integrating these new notions with the previous framework, we propose more effi-
cient and reasonable online FI detection and resolution method for the HNS integrated
services. To show the effectiveness we conduct a case study through practical services. It
is shown that the proposed method achieves more reasonable FI detection and resolution,
compared with the previous framework.

Security Monitor

Leaving Home

APIAPI

API

API

API API

Home
Server

Coming Home
API API API

Ventilator
Air-
ConditionerFire/Gas

Sensor
Light TV

DVD/HDD
Recorder

SpeakersWindow/
CurtainDoorKettleRefrigerator

Air Cleaner

E
xt

er
na

l N
et

w
or

k

API API

OPEN

DVD TheaterAPI

Integrated
Services

Thermom
eter

API

API

Security
Camera

Figure 1. Home network system

2. Preliminaries

This section outlines the context and scope by reviewing our previous work briefly. More
detailed description can be found in [7].

2.1. Home Network System (HNS)

As illustrated in Figure 1, a HNS consists of networked home appliances and a home
server, connected to LAN at home. Each appliance typically has a set of control APIs,
with which the user or external software agents can control the appliance. The home
server works as a centralized application server managing appliances and services. It
also plays a role of the gateway to the external network. The integrated service is an
application that invokes the APIs of multiple appliances, according to a certain service
logic. The services are installed and executed on the home server.

2.2. Object-Oriented Framework for FIs in HNS

In our previous work [7], we proposed an object-oriented framework to formalize the
HNS. In the framework, the HNS is defined as a set of appliances and an environment.
Each appliance is modeled as an object consisting of attributes (also called properties)
and methods. The attributes are primary variables characterizing the state of the appli-
ance, which are referred or updated by the methods. The methods correspond to the
appliance APIs, each of which is abstracted by a pair of a pre-condition and a post-
condition. The pre-condition Pre(m) of a method m represents a guard condition over
the attributes that must be satisfied before m is executed. The post-condition Post(m)
of a method m is a resultant condition over the attributes guaranteed after m is executed.

The environment is modeled as a global object that has a set of environment at-
tributes, such as temperature, brightness, sound volume. The environment attributes can
be read or written indirectly by the appliance methods. For simplicity, we assume in this
paper that all the appliances in the HNS share a single room (thus, the environment is
a singleton object). We also assume that an one-to-one mapping from every appliance
object to a real appliance is already given.

Each integrated service is modeled by an object that uses multiple appliances.
Every service is supposed to have begin() method, which invokes a sequence
{m1;m2; ...;mn; } of appliance methods mi’s when activating the service. Optionally,
a service can have end() method with {me1;me2; ...;mek}, which declares the post-
processing for terminating the service.

power: [ON, OFF]
ch: [1..100]
input: [0,1,2,3]
volume: [1..100]
on() {

Pre: true
Post: power==ON
EnvWrite: Env.Sound

}
off() {

Pre: true
Post: power==OFF
EnvWrite: Env.Sound

}
changeInput(in:[0,1,2,3]) {
Pre: power==ON
Post: input == in …}

setChannel (c:[1..100]){…}
setVolume (v:[1..100]){…}

Light

brightness: [1..10]
setBrightness(b: [1..10]) {

Pre: true
Post: brightness == b
EnvWrite: Env.Brightness

}

TV

Curtain

state: [OPEN,CLOSE]
open() {

Pre: true
post: state==OPEN
EnvWrite: Env.Brightness

}
close() {

Pre: true
post: state==CLOSE
EnvWrite: Env.Brightness

}

DVD_Recorder

:
:

Speaker

:
:

SS1:DVD-Theater (DVD-T) SS2:Coming Home (CH)

SS3:Leaving Home (LH)

begin() {
1.1. DVD_Recorder.on();
1.2. DVD_Recorder.changeInput(0);
1.3. TV.on();
1.4. TV.changeInput(1);
1.5. Curtain.close();
1.6. Light.setBrightness(1);
1.7. Speaker.changeMode(5.1ch);
1.8. DVD_Recorder.play();
}
end () {
1.11. DVD_Recorder.stop();
1.12. DVD_Recorder.off();
1.13. TV.off();
1.14. Light.setBrightness(10);
1.15. Curtain.open();
}

begin() {
2.1. Door.notify(OPEN);
2.2. Light.setBrightness(10);
}

begin() {
3.1. DVD_Recorder.off();
3.2. TV.off();
3.3. Curtain.close();
3.4. Light.off();
3.5. Speaker.off();
3.6. VideoCamera.off();
}

Environment

Temperature
Brightness
SoundVolume

(a) Appliances

(b) Environment

(c) Integrated Services

Figure 2. Object Oriented Model for the Example HNS (partly shown)

Figure 2 shows the models of (a) the appliances, (b) the environment, and (c) the
three integrated services introduced in Section 1. The appliances are drawn in the similar
description to the UML class diagram. [A,B,C, ...] represents the enumerated type, and
[l..u] represents the integer type with the range from l to u. Pre and Post in each appliance
method are respectively the pre- and post-conditions. EnvWrite means that the method
may overwrite the value of the specified environment attribute. As shown in Figure 2(b),
the environment has three attributes in this example. In Figure 2(c), a method m() of
an appliance A is denoted by A.m(). For convenience, we assign an index number for
each method. Every service has begin() method that achieves the scenario described
in Section 1. Only DVD-T has end() method, which is supposed to be executed by the
user when he/she wants to terminates the service.

2.3. Formalization of FIs and Offline Definition

Using the HNS model, we have defined two types of FIs in [7]. In the following, let s1

and s2 be given integrated services.

Definition 1 (Appliance Interaction) Let m1 and m2 be methods within the same
appliance d. We say that m1 and m2 are in conflict on the appliance, denoted by
m1�appm2, iff m1 and m2 satisfy at least one of the following conditions:

Condition D1: Post(m1) ∧ Post(m2) = Φ (unsatisfiable)
Condition D2: Post(m1) ∧ Pre(m2) = Φ (unsatisfiable)

We say that s1 and s2 cause an appliance interaction, denoted by s1�apps2, iff there
exists a pair of methods (m1,m2) such that [m1�appm2], [m1 is involved in s1] and
[m2 is involved in s2].

Intuitively, Condition D1 means that two methods has conflicting goals (post-
conditions) that cannot be satisfied simultaneously on the common appliance. A typical

example is TV.on()�appTV.off(). Condition D2 is the case where the execution of
one method may disable another. The appliance interaction can occur when such con-
flicting methods are invoked by different services.

Definition 2 (Environment Interaction) Let m1 and m2 be appliance methods. We say
that m1 and m2 are in conflict on the environment, denoted by m1�envm2, iff m1 and
m2 satisfy at least one of the following conditions:

Condition E1: EnvWrite(m1) ∩ EnvWrite(m2) �= φ
Condition E2: EnvWrite(m1) ∩ EnvRead(m2) �= φ

We say that s1 and s2 cause an environment interaction, denoted by s1�envs2, iff there
exists a pair of methods (m1,m2) such that [m1�envm2], [m1 is involved in s1] and
[m2 is involved in s2].

Condition E1 says that two methods try to write some common environment at-
tributes simultaneously. A typical example is AirConitioner.cooling()�envHeater.on().
Condition E2 is the case where reading from and writing to a common environment
attribute may cause a race condition.

In the following, we may simply use � to represent either �app or �env when no
clear distinction is needed. Using the formalization, we can now conduct the offline FI
detection as follows.
Offline FI detection:
Input: A pair of integrated services s1 and s2, a model of HNS consisting of appliances
and an environment.
Output: Two sets FIa(s1, s2) and FIe(s1, s2) of pairs of conflicting methods s.t.

FIa(s1, s2) = {(m1,m2)|[m1�appm2] ∧ [m1 is in s1] ∧ [m2 is in s2]}
FIe(s1, s2) = {(m1,m2)|[m1�envm2] ∧ [m1 is in s1] ∧ [m2 is in s2]}

Procedure: Initialize FIa(s1, s2) and FIe(s1, s2) be empty. Let {m11;m12; ...;m1n; }
be a sequence of methods specified in s1. Also, let {m21;m22; ...;m2k; } be a sequence
of methods specified in s2. For every pair (m1i,m2j) (1 ≤ i ≤ n, 1 ≤ j ≤ k), if
m1i�appm2j , then put it in FIa(s1, s2). If m1i�envm2j , then put it in FIe(s1, s2). If
both FIa(s1, s2) are FIe(s1, s2) empty, conclude that no FI occurs.

All FI Scenarios 1, 2, 3 in Section 1 can be exaplained and detected by the offline
detection. For example, FI Scenario 1 is explained by conflicting methods on the light,
i.e., DVD-T.Light.setBrightness(1)�appCH.Light.setBrightness(10).

2.4. FI Resolution with Priority

A simple resolution scheme for FIs in HNS integrated services is to introduce (static)
priority (denoted by pri(s)) for each service s. When s1�s2, if pri(s1) > pri(s2),
then the execution of s1 takes precedence over that of s2. For this, there are two naive
approaches on how to deal with s2.

FI Resolution 1 (AbortAll) Abort (or cancel) all the methods in s2.

FI Resolution 2 (KeepAlive) Keep (or execute) non-conflicting methods in s2, and
abort (or cancel) only conflicting methods.

2.5. Scenarios in Questions

Based on the framework described above, we tried to conduct FI detection and resolu-
tion during runtime. However, we have faced with some scenarios that could not be ex-
plained reasonably by the previous framework only. Consider again the integrated ser-
vices (DVD-T, CH and LH) and FI Scenarios 1, 2 and 3 introduced in Section 1.

Scenario Q1 (CH & LH) Let us consider FI Scenario 2 with slightly different setting.
Suppose that user C executes LH to leave home. Immediately after that, C returns
home to pick up something left behind, and then CH is activated. In this case, can
we say that “CH and LH really cause the FI”, as the offline detection says so? This
question is related to the problem P1 in Section 1.

Scenario Q2 (DVD-T & CH) Assuming that pri(CH) > pri(DVD-T), we try to re-
solve the FI within FI Scenario 1. If we take the AbortAll resolution, all methods in
DVD-T are aborted. This is quite relentless for A since only the light is disturbed.
On the other hand, taking the KeepAlive resolution seems to be OK in this case,
since A can keep watching the movie with compromising the light. However, if
the DVD-recorder and the TV are occupied by another higher-priority service (say
Security Monitor Service), then KeepAlive scheme w.r.t. DVD-T activates the cur-
tain, the light and the speaker only without the TV and the DVD recorder. Is this
meaningful for the DVD-T service? This question is related to the problem P2.

Scenario Q3 (LH & DVD-T) Consider FI Scenario 3 with pri(LH) > pri(DVD-T).
According to the priority, all the appliances used in DVD-T are shutdown by LH.
Then, questions may arise from E; “When do I start DVD-T again?”, “Does no-
body resume my interrupted DVD-T after D leaves home?”. Both of the previous
resolution schemes just abort low-priority methods in conflict, and forsake them
even after the high-priority methods are terminated. More sophisticated schemes
are needed to achieve fairness for lower-priority services. This question is related
to the problem P3.

3. Proposed Method

3.1. Activation

The problem in Scenario Q1 arises because the previous framework lacked the notion of
time. On receiving a request, a service executes the sequence of the appliance methods
specified in begin() method. However, after all the methods are executed, it is quite
ambiguous until when the service is recognized to be active. For this, we introduce the
notion of activation, which explicitly defines the execution lifetime of a service.

Definition 3 (Activation) Let s be an integrated service. Activation of s is defined as
an execution period (lifetime) from when s is activated with begin() method until s is
terminated. Depending on when and how s is terminated, we define the following three
types of activation.

(a) begin-end type: Activation continues until when the user explicitly terminates s
with end() method.

Leaving
Home

begin()

userDVD
Theater

begin()

user

end()

(a) begin-end type (b) instant type

Coming
Home

begin()

user

(c) timer type

expire

<<timer>><<instant>><<begin-end>>

Figure 3. Three types of activation

(b) instant type: Activation ends immediately when all the appliance methods in s are
executed.

(c) timer type: Activation continues for a pre-defined time. When the time expires, s
autonomously terminates itself (with end() method if any).

We assume that exactly one of these types must be associated with every service. We
say that s is active iff s is in activation. Also, we say s is inactive iff s is not active. An
appliance method m in s is said to be active iff s is active.

Figure 3 shows UML sequence charts describing the three activation types associ-
ated with three services DVD-T, LH and CH. In the figure, a rectangle below each ser-
vice represents the activation. Considering the nature of DVD-T, the service should be
continued until when the user explicitly stops watching the movie. Thus, we suppose that
DVD-T has the begin-end activation as shown in Figure 3(a). As for LH, the service can
be recognized as “finished” immediately after all the appliances are shut down. So, we
associate the instant type with LH, as shown in Figure 3(b). We assigned the timer-type
activation for CH (Figure 3(c)). The light should be brightened for some short period
while the user gets into the room.

Based on the activation, we extend the definition of FIs for online FI detection.

Definition 4 (Interaction During Runtime) We say that s1 and s2 cause an interaction
during runtime, denoted by s1 �� s2, iff [s1 and s2 are both active] and [s1�s2].

Using the new definition, we explain two scenarios with and without FIs for the same
combination of services (CH and LH). Consider FI Scenario 2 in Section 1, where CH is
first activated. Since the activation type of CH is the timer type, CH becomes active and
turns on the light for a while. LH is then activated before CH is expired. This causes an
FI during runtime since the activations of CH and LH overwrap. Let us consider Scenario
Q1 in Section 2.5, where LH is first executed with the instant type. After all appliances
are shutdown, LH is soon terminated and becomes inactive. Then CH is activated. In this
case, no FI occurs during runtime since LH is no more active.

We now present an online FI detection method. In practice, the online detection
should be performed before FIs actually occur. Hence, the detection is conducted be-
tween an inactive service going to be newly activated, and services already active within
the HNS. For this, we deploy a server process, called FI manager, between the user and

CH.
begin()

(a) FI Scenario 2 (b) Scenario Q1

<<timer>>

Leaving
Home

Coming
Home

expire

<<instant>>

FI
Manager

No FI

begin()

User E

begin()LH.
begin()

! FI during runtime

LH.
begin()

<<timer>>

Leaving
Home

Coming
Home

expire

<<instant>>

FI
Manager

No FI

begin()

User E

begin()

CH.
begin()

No FI

Figure 4. Online FI detection with FI manager

the services. The FI manager keeps monitoring the activation of every service, intercepts
every service request from a user, and performs the online FI detection procedure.

Online FI detection (conducted by FI manager):
Input: An inactive service s0 that is going to be activated, a set of already active services
AS = {s1, s2, ..., sn}, a model of HNS consisting of appliances and an environment.
Output: Two sets FIRa(s0, AS) and FIRe(s0, AS) of pairs of methods conflicting
during runtime s.t.

FIRa(s0, AS) = {(m0,m)|[m0�appm] ∧ [m0 is in s0] ∧ [m is in some si ∈ AS]}
FIRe(s0, AS) = {(m0,m)|[m0�envm] ∧ [m0 is in s0] ∧ [m is in some si ∈ AS]}

Procedure: Initialize FIRa(s0, AS) and FIRe(s0, AS) to be empty. For every si ∈
AS (1 ≤ i ≤ n), calculate FIa(s0, si) and put the result in FIRa(s0, AS). Also,
calculate FIe(s0, si) and put the result in FIRe(s0, AS). We just write FIR(...) when
no distinction between FIRa(...) and FIRe(...) is needed.

We assume that for every service request, the FI manager performs an atomic trans-
action of FI detection, FI resolution (presented later), and service execution. Even if
multiple requests occur simultaneously, they are serialized and processed one-by-one.

Figure 4 shows how to detect FIs during runtime within the two example scenar-
ios. In Figure 4(a), when E executes CH, the FI manager says that no FI occurs since
FIR(CH, {}) = φ. Next, when E executes LH , the FI manager detects an FI, since
FIRa(LH, {CH}) = { (LH.Light.off(), CH.Light.setBrightness(10)) }.
If no resolution is applied, CH and LH actually cause an FI as shown in the dotted acti-
vation on LH. On the other hand, in Figure 4(b) when E executes CH following LH, no
FI occurs since LH is no more active and FIR(CH, {}) = φ.

3.2. Mandatory Methods

The problem in Scenario Q2 arises because all appliance methods within a service
had the same weight of importance. For instance, for DVD-T, methods related to the
HDD/DVD recorder and the TV are mandatory, because the user cannot watch movies
without them. On the other hand, methods related to the curtain or the light are somehow
optional. Even without them the user would enjoy the movie in a compromised setting.

Definition 5 (Mandatory Methods) Let s be an integrated service, and let m be an ap-
pliance method within s. We say that m is mandatory iff omission of m cannot achieve
the essential requirement of s. We say that m is optional iff m is not mandatory.

For every service s, we assume that a set Man(s) of mandatory methods within s must
be given by the designer of s. Taking FIs during runtime into account, we then define the
executablity of appliance methods.

Definition 6 (Enabling Condition of Method) Let s.m be an appliance method in an
inactive service s. Let AS be a set of services currently active, and let sa.ma be any
active method in some active service sa ∈ AS. We say that s.m is enabled, denoted by
enabled(s.m), iff one of the following conditions is satisfied.

Condition EC1: There exists no sa.ma such that (s.m, sa.ma) ∈ FIR(s,AS), or
Condition EC2: If there exists sa.ma such that (s.m, sa.ma) ∈ FIR(s,AS), then

pri(s) > pri(sa).

Intuitively, s.m can be executed only when [there is no conflicting method currently
active], or [even if there is, then the priority of s.m is higher than that of any conflict-
ing method]. Then, we consider that a service s can be executed only when all of its
mandatory methods are enabled.

Definition 7 (Enabling Condition of Service) Let s be an integrated service. We say
that s is enabled, denoted by enabled(s), iff ∀m ∈ Man(s); enabled(m) = true.

Note that evaluation of the enabling condition requires the online FI detection. So,
we assume that the FI manager evaluates enabled(s) during runtime on receiving a
request of s. Execution of s may cause FIs with currently active services, and some
lower-priority services are suppressed by s through the priority-based resolution.

Definition 8 (Suppress Relation) Let sa be a service already active within the HNS,
and let s be an inactive service going to be activated. We say that sa is suppressed by s,
denoted by sa � s, iff [pri(sa) < pri(s)] and [sa �� s on executing s]. Similarly, we
define ma � m for methods ma in sa and m in s.

Using the enabling condition and the suppress relation, we present a new scheme of
online resolution.

FI Resolution 3 (KeepMandatory) Let s be an inactive service to be activated. If
enabled(s) is false, cancel s. If enabled(s) is true, perform the following for every
method m in s. If there exists sa such that sa � s, abort all conflicting methods ma’s
in sa such that ma � m. For this, if ma ∈ Man(sa), then abort the whole service sa

(with end() method if any). If m is mandatory, execute m. If m is optional, execute m
as long as enabled(m) is true.

Figure 5 shows the application of the KeepMandatory scheme to Scenario Q2 in Sec-
tion 2.5. Within DVD-T, we assume that Curtain.close() and Light.setBrightness(1)
are only optional, and others are all mandatory. As for CH, all methods are assumed
to be mandatory. In Figure 5(a), suppose now that pri(DVD-T) < pri(CH). User A

only light is
canceled

<<begin-end>>

(a) DVD-T & CH

DVD-T.
begin()

Coming
Home

DVD
Theater

expire

<<timer>>

FI
Manager

User A

No FI

begin()

User B

begin()

CH.
begin() ! FI (optional conflict)

service
canceled

<<begin-end>>

DVD-T.
begin()

Security
Monitor

DVD
Theater

<<timer>>

FI
Manager

User A

!

expire

(b) SecurityMonitor & DVD-T

FI (mandatory conflict)

Figure 5. Online FI resolution with KeepMandatory scheme

first activates DVD-T, and then B comes home activating CH. The FI manager de-
tects an FI between CH and DVD-T since CH.Light.setBrightness(10) �app

DVD-T.Light.setBrightness(1). Because CH has a higher priority, the former
method is enabled while the latter method is suppressed and aborted. However, as
DVD-T.Light.setBrightness(1) is optional, DVD-T can continue the service with
compromising the light setting. Note that the same resolution is performed for DVD-
T even if CH is executed first. Next, consider a situation where the TV and the DVD
recorder are occupied by SecurityMonitor Service, as shown in Figure 5(b). In this case,
since mandatory methods of DVD-T are not enabled, the whole service is canceled.

3.3. Suspend/Resume Mechanism

The problem in Scenario Q3 (see Section 2.5) was that when s � s′ held, there was
nothing for it but to abort s. To cope with this, we devise a new resolution scheme, called
SuspendResume, by slightly extending the KeepMandatory scheme. Intuitively, even if
s � s′ holds, we make s sleep temporally, and wake up later when s′ is terminated.

FI Resolution 4 (SuspendResume) Let s be an inactive service to be activated. If
enabled(s) is false, cancel s. If enabled(s) is true, perform the following for every
method m in s. If there exists sa such that sa � s, suspend all conflicting methods
ma’s in sa such that ma � m. For this, if ma ∈ Man(sa), then suspend the whole
service sa (with end() method if any). If m is mandatory, execute m. If m is optional,
execute m as long as enabled(m) is true. When s is still terminated, if sa is suspended
and enabled(sa) is true, resume sa by executing begin() method. If sa is still run-
ning, resume suspended optional methods ma’s by executing them again, as long as
enabled(ma) is true.

Depending on the nature of s, it would be good if we can choose either s should
be suspended or aborted, when suppressed. For this, we assume that every service s
has a boolean flag resumable(s). If this flag is true, s can use the suspend/resume
mechanism when suppressed. Otherwise, s is aborted.

To achieve the scheme, we define a life cycle of a service, which is described in a
UML state chart in Figure 6. In the figure, a rectangle represents a state, a labeled arrow

Terminated

Active

Suspend

 Running Enabled Initialized

BEGIN [enabled]
EXECUTE
[act=<<begin-end>>
or <<timer>>]

BEGIN [!enabled]

EXPIRE

END

SUPPRESS [!resumable]
RESUME
[enabled]

SUPPRESS
[resumable]

EXECUTE [act=<<instant>>]

RESUME
[!enabled]

Events:

 BEGIN - User activates the service.
 EXECUTE - System dispatches the service.
 SUPPRESS - Service has been overridden
 by another higher-priority service.
 RESUME - System resumes the service.
 END - User terminates the service.
 EXPIRE - Service timer is expired.

Figure 6. Service (Method) life cycle with suspend/resume

suspended
period

<<begin-end>>

DVD-T.
begin()

Leaving
Home

DVD
Theater

<<instant>>

FI
Manager

User E

No FI begin()

User D

suppress

LH.
begin() ! FI (mandatory conflict)

begin()
resume

Figure 7. Online FI resolution with SuspendResume scheme

represents a transition in a form of EVENT [condition]. We assume that the life cycle
is managed and monitored by the FI manager.

Every service s is instantiated at Initialized state. If a user activates s with
begin() method, enabled(s) is evaluated by the FI manager through online FI detection
among mandatory methods. If enabled(s) is false, the execution is canceled and s moves
to Terminated state. If true, s moves to Enabled state and waits for dispatch. Then, the
FI manager dispatches s to the home server. For this, if the activation type of s is instant
([act=«instant»]), s moves to Terminated state due to its definition. Otherwise, s
moves to Running state. Now, if another higher-priority service s′ is activated and any
FI is detected, then the FI manager issues SUPPRESS event to s. If resumable(s) is true,
s is suspended at Suspend state. After all services suppressing s are terminated and
enabled(s) holds, s is resumed to Running state. Both Running and Suspend states
belong to Active super-state. Thus, Hence, s can be terminated from either Running or
Suspend state, when the user terminates s (END) or s expires (EXPIRE).

Figure 7 shows an application of the SuspendResume scheme to resolve the FI in
Scenario Q3 (see Section 2.5). In this scenario, E first activates DVD-T to watch the
movie. At this stage, no FI occurs. Then, D tries to activate LH. Since DVD-T is still
active and pri(LH) > pri(DVD-T), DVD-T is suppressed by LH, i.e., DVD-T � LH.
The FI manager issues an event SUPPRESS to DVD-T, and then DVD-T is suspended.
Next, LH is executed and all the appliances are shutdown. Since the activation type of LH
is instant, LH is soon terminated. On confirming the termination of LH, the FI manager
automatically resumes DVD-T by turning on related appliances again. Thus, E is happy
to continue watching movies.

<< begin-end >>
Priority 4 [Resumable]

SS1:DVD-Theater (DVD-T)

<< timer >>
Priority 6

SS2:Coming Home (CH)

<< instant >>
Priority 8

SS3:Leaving Home (LH)

begin() {
1.1. * DVD_Recorder.on();
1.2. * DVD_Recorder.changeInput(0);
1.3. * TV.on();
1.4. * TV.changeInput(1);
1.5. - Curtain.close();
1.6. - Light.setBrightness(1);
1.7. * Speaker.changeMode(5.1ch);
1.8. * DVD_Recorder.play();
}
end () {
1.11. - DVD_Recorder.stop();
1.12. - DVD_Recorder.off();
1.13. - TV.off();
1.14. - Light.setBrightness(10);
1.15. - Curtain.open();
}

begin() {
2.1. * Door.notify(OPEN);
2.2. * Light.setBrightness(10);
}

begin() {
3.1. * DVD_Recorder.off();
3.2. * TV.off();
3.3. * Curtain.close();
3.4. * Light.off();
3.5. * Speaker.off();
3.6. * VideoCamera.off();
}

<< timer >>
Priority 10 [Resumable]

SS4:Security Monitor (SM)

begin() {
4.1. * MotionSensor.notify(DETECT);
4.2. * VideoCamera.on();
4.3. - TV.on();
4.4. - TV.changeInput(2);
4.5. * DVD_Recorder.on();
4.6. * DVD_Recorder.changeInput(1);
4.7. * DVD_Recorder.recording();
}
end () {
4.11. - DVD_Recorder.stop();
4.12. - DVD_Recorder.off();
4.13. - TV.off();
4.14. - VideoCamera.stop();
}

Figure 8. Integrated services used in case study

4. Case Study

To demonstrate the effectiveness of the proposed method, we conduct a case study in
this section. In the case study, we use four integrated services in Figure 8: DVD Theater
(DVD-T), Coming Home (CH), Leaving Home (LH), and Security Monitor (SM).
The first three services are same as those introduced in Section 1. The Security Monitor
service is defined as follows.

Security Monitor Service(SM): Integrating a motion sensor, a video camera, a TV and
a DVD/HDD recorder, this service provides security monitoring. When the sensor
notices that somebody breaks into the house garden at night, the camera shoots the
view, the TV is turned on to display the camera view, and the DVD/HDD recorder
is turned on to record the view. The recording is automatically terminated after
pre-defined time.

As shown in Figure 8, each service has an activation type, a priority, and a resumable
flag. Each method is either mandatory (labeled as *) or optional (labeled as -).

We apply the proposed online FI detection and resolution method to all pairs among
the four services. Due to limited space, we examine only appliance interactions among
them. Note that, in the online detection and resolution, we have to consider execution
order of the services. That is, for every pair of services s1 and s2, we have to investi-
gate FIs within two different execution order: (s1, s2) and (s2, s1). As for the resolution
scheme, we adopt the SuspendResume scheme.

Table 1 shows FIs detected by the proposed online detection method. Each row rep-
resents a service firstly executed, whereas each column represents a service secondly ac-
tivated. Each entry represents a set of conflicting methods causing FIs within the com-
bination of service. It can be seen that some FIs depend on the execution order. For in-
stance, when LH is the first service, no FI occurs. This is because LH has an instant acti-
vation. On the other hand, when LH is the second, it interacts with every service. When
the first service has the timer-type activation, the occurrence of FIs becomes conditional

Table 1. FIs detected by proposed online detection

DVD-Theater (DVD-T) Coming Home (CH) Leaving Home (LH) Security Monitor (SM)

DVD-T (1.6,2.2)
(1.1,3.1)(1.2,3.1)(1.3,3.2)(1.4,3.2)
(1.6,3.4)(1.7,3.5)(1.8,3.1)

(1.2,4.6)(1.4,4.4)(1.8,4.7)

CH (2.2,1.6) * (2.2,3.4) *

LH

SM (4.6,1.2) (4.4,1.4) (4.7,1.8) *
(4.5,3.1) (4.6,3.1) (4.7,3.1)
(4.3,3.2) (4.4,3.2) (4.2,3.6) *

F
irs

t S
er

vi
ce

Second Service

(entries with *). These FIs are detected only when the second service is activated before
the first is expired.

In the following, we describe the interpretation of the FI scenarios, and how those
FIs are resolved by the proposed Suspend/Resume resolution.

FI-1 (DVD-T, CH): While DVD-T is active, CH is executed. An FI occurs on the light.
Since CH has a higher priority, the light setting of DVD-T is suppressed, and
the light is brighten by CH. However, this does not suspend DVD-T, because the
operation on the light is optional. The light automatically becomes dark again after
CH expires, as the suspend/resume mechanism works for DVD-T.

FI-2 (DVD-T, LH): While DVD-T is active, LH is executed. FIs occur on all appliances
that DVD-T uses. Since LH has a higher priority, DVD-T is suppressed by LH. As
the mandatory methods are in conflict, DVD-T is suspended by executing end()

method. Then LH shutdowns all appliances. As the activation of LH ends instantly,
DVD-T is soon resumed, and the appliances are turned on again by begin()

method.

FI-3 (DVD-T, SM): While DVD-T is active, SM is executed. FIs occur on the TV and
the DVD recorder. As the mandatory methods are in conflict, DVD-T is suspended
for a while. Then SM uses the TV and the recorder. When SM expires, DVD-T is
soon resumed and all the appliances are turned on again.

FI-4 (CH, DVD-T): While CH is active, DVD-T is executed. An FI occurs on the light.
Although DVD-T has a lower priority than CH, DVD-T is enabled since the light
setting is not mandatory for DVD-T. When executed, the appliances except the
light is turned on for watching movie.

FI-5 (CH, LH): While CH is active, LH is executed. An FI occurs on the light. Since
LH has a higher priority, CH is suppressed by LH. For this, CH is not suspended
but is immediately terminated, as the resumable flag is not assigned to CH.

FI-6 (SM, DVD-T): While SM is active, DVD-T is executed. FIs occur on the TV and
the DVD recorder. As the mandatory resources are already in use by the higher-
priority service SM, DVD-T is not enabled and thus canceled.

FI-7 (SM, LH): While SM is active, LH is executed. FIs occur on the TV and the DVD
recorder. As the mandatory operations cannot be executed due to conflicts with the
higher-priority service SM, LH is not enabled and thus canceled.

As we review the above results, all the FIs are detected and resolved in a quite natural
and reasonable way, which does not contradict to our intuition. In our future work, we
plan to increase the credibility by applying it to more services.

Table 2. FIs detected by previous offline detection

DVD-Theater (DVD-T) Coming Home (CH) Leaving Home (LH) Security Monitor (SM)

DVD-T (1.6,2.2)
(1.1,3.1)(1.2,3.1)(1.3,3.2)(1.4,3.2)
(1.6,3.4)(1.7,3.5)(1.8,3.1)

(1.2,4.6)(1.4,4.4)(1.8,4.7)

CH (2.2,1.6) (2.2,3.4)

LH
(3.1,1.1)(3.1,1.2)(3.2,1.3)(3.2,1.4)
(3.4,1.6)(3.5,1.7)(3.1,1.8)

(3.4,2.2)
(3.1,4.5)(3.1,4.6)(3.1,4.7)
(3.2,4.3)(3.2,4.4)(3.6,4.2)

SM (4.6,1.2) (4.4,1.4) (4.7,1.8)
(4.5,3.1) (4.6,3.1) (4.7,3.1)
(4.3,3.2) (4.4,3.2) (4.2,3.6)

FIs that do not actually occur.
FIs that occur only in a special timing.

Second Service

Table 3. Evaluation of resolution schemes w.r.t. treatment for suppressed services

Resolution Scheme Survivability Functionality Overhead

AbortAll Low Aborted Low

KeepAlive Medium Not Guaranteed Low

KeepMandatory Medium Compromised or Aborted Medium

SuspendResume High Guaranteed High

5. Discussion

5.1. Advantage of Proposed Method

To evaluate the advantage of the proposed method, we first examine the FI detection
results between the previous offline and the proposed online detection methods. Table 2
shows the pair of conflicting methods detected by the previous offline FI detection. Since
the offline detection does not consider the activation, it always assumes that two services
s1 and s2 are executed simultaneously. Thus, it can be seen, in Table 2, that for both
combinations of (s1, s2) and (s2, s1) the same pairs of conflicting methods are detected.
Compared to the result with the proposed online method (see Table 1), we can see that
the previous offline method over-detects FIs which may not actually occur, as shown in
the shaded entries in Table 2.

We then evaluate the four FI resolution schemes. Table 3 compares the four schemes
with respect to treatment for lower-priority services (i.e., suppressed services). The met-
rics are (a) survivability, whether or not a service can continue to function when sup-
pressed, (b) functionality, whether or not a service can achieve a functional requirement
as a result of resolution, (c) overhead, how much effort needed for the FI manager for
the resolution. The AbortAll scheme gives a quite simple solution, but gives no room for
suppressed services to survive. The KeepAlive scheme is a best-effort approach in which
non-conflicting methods can live. However, requirements of services may not be guar-
anteed as a result of resolution. The KeepMandatory scheme circumvents this problem
by introducing the notion of mandatory methods. However, if any mandatory method is
suppressed, the whole service has to be aborted. Finally, the SuspendResume scheme
provides a way to recover for suppressed services using the suspend/resume mechanism.
Thus, we consider that the SuspenedResume scheme is most effective and reasonable
among the four, although it requires most expensive overhead in FI resolution.

5.2. Limitations

In prioritizing services, we have assigned a static priority for every service, which assigns
the same priority value to all the appliance methods within the service. This is simple but

works well with the proposed method. However, we cannot say currently that the service-
wise priority is the best, since there are many other ways of giving priority. For instance,
we can use a method-wise priority, or assign a priority to a user who activates the service,
or may introduce dynamic priority based on the usage of the service. We examine them
in our future work. Note, however, that no matter which priority is adopted, the proposed
method works as long as pri(s) can be evaluated during runtime.

Another limitation is that all responsibilities with respect to the FIs are concentrated
on the centralized FI manager, which may cause the low scalability. However, we con-
sider that the scalability issue in the HNS is currently not so serious as in the telephony
networks. As the HNS is deployed for every house locally, every FI manager just takes
care of one house with a home server. In the future, the HNS will be inter-worked over
multiple houses to achieve a ubiquitous community. In that case, we have to think new
types of FIs as well as global coordination among remote FI managers.

5.3. Related Work

Kolberg et al. proposed an online FI detection and resolution method with the HNS
[4][12]. They characterize FIs as competitions among resources (i.e., appliances), and
presented an FI detection method based on a resource locking mechanism. As for the FI
resolution, they basically adopt the AbortAll scheme only without any suspend/resume
mechanism. Also, there is no explicit consideration of the three types of activations or
mandatory methods. These are major differences from our method.

Pattara et al. presented a formal framework to detect FIs within the HNS, using
the SPIN model checker [5]. Unlike ours, this method allows branches and loops in the
service description, and can give complete proof within the model. However, this method
basically provides the offline FI detection for early stages of the development. Also they
do not address the FI resolution in the method.

Our approach, which deploys the FI manager in the HNS, is quite similar to the Fea-
ture Manager based approaches (e.g., [2][3][6]) in the conventional telephony services2.
However, we consider that the activation management conducted by the manager would
be quite different. The activation of a telephony service has been clearly defined within
a call with subscribed features. No such explicit definition exists in the HNS integrated
services, which motivated us to define the three types of activations. Also, some HNS
services can be quite long-life, compared to a single call of telephony. Hence, on resolv-
ing FIs, we have to consider more carefully fairness and compensation for low-priority
services, rather than just aborting them. The proposed SuspendResume scheme is one of
the solutions for that.

6. Conclusion

In this paper, we have presented an online FI detection and resolution method for inte-
grated services of the home network system. Introducing three new notions, i.e., the ac-

2More specifically, the proposed method can be categorized in the feature manager − a-priori information
approaches (see Section 6.3 of [1]), in the sense that the proposed method uses the HNS model given in the
design time for the online FI detection. Note, however, that the proposed method can detect and resolve FIs
during runtime without a priori knowledge of potential interactions or pre-defined resolution matrix.

tivation, the mandatory methods, and the suspend/resume mechanism, on top of our pre-
vious framework, we could achieve more precise and reasonable FI detection and resolu-
tion within the context of FIs in the HNS. The case study demonstrated the effectiveness
of the proposed method.

We are currently implementing the proposed method in a real home network system.
Our primary future work is evaluation and feasibility studies on the implementation.
Evaluation of other resolution schemes through usability testings with actual home users
is also an interesting issue.

Acknowledgments

This research was partially supported by: [the Japan Ministry of Education, Sci-
ence, Sports, and Culture, Grant-in-Aid for Young Scientists (B) (No.18700062,
No.20700027)], [JSPS and MAE under the Japan-France Integrated Action Pro-
gram(SAKURA)], and [Panasonic Electric Works Co., Ltd.].

References

[1] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction: A critical review and
considered forecast. Computer Networks, 41(1):115–141, January 2003.

[2] N. Fritsche. Runtime resolution of feature interactions in architectures with separated call and feature
control. In Proc. Int’l. Workshop on Feature Interactions in Telecommunication Systems III (FIW’95),
pages 43–63, Kyoto, JP, June 1995. IOS Press, Amsterdam.

[3] Y. Jia and J. M. Atlee. Run-time management of feature interactions. In Proc. 6th ICSE Workshop
on Component-Based Software Engineering (CBSE’03), pages 115–134. IOS Press, Amsterdam, May
2003.

[4] M. Kolberg, E. H. Magill, and M. Wilson. Compatibility issues between services supporting networked
appliances. IEEE Communications Magazine, 41(11):136–147, November 2003.

[5] P. Leelaprute, T. Matsuo, T. Tsuchiya, and T. Kikuno. Detecting feature interactions in home appliance
networks. In In Proc. of 9th Int’l Conference on Software Engineering, Artificial Intelligence, Network-
ing, and Parallel/Distributed Computing (SNPD 2008), pages 895–903, August 2008.

[6] D. Marples and E. H. Magil. The use of rollback to prevent incorrect operation of features in intelligent
network based systems. In Proc. Int’l. Workshop on Feature Interactions in Telecommunication Systems
V (FIW’98), pages 115–134, Lund, Sweden, September 1998. IOS Press, Amsterdam.

[7] M. Nakamura, H. Igaki, and K. Matsumoto. Feature interactions in integrated services of networked
home appliances -an object-oriented approach-. In Proc. Int’l. Conf. on Feature Interactions in Telecom-
munication Networks and Distributed Systems (ICFI’05), pages 236–251, Leicester, UK, June 2005.
IOS Press, Amsterdam.

[8] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. ichi Matsumoto. Adapting legacy home appli-
ances to home network systems using web services. In IEEE International Conference on Web Services
(ICWS2006), pages 849–858. IEEE Computer Society Press, September 2006. Chicago, USA.

[9] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. ichi Matsumoto. Constructing home network
systems and integrated services using legacy home appliances and web services. International Journal
of Web Services Research, 5(1):82–98, January 2008.

[10] Panasonic Electric Works Co., Ltd. Lifinity. http://denko.panasonic.biz/Ebox/kahs/
index.html, 2008.

[11] Toshiba Consumer Marketing Corp. Toshiba home network – feminity. http://www3.toshiba.
co.jp/feminity/feminity_eng/index.html, 2005.

[12] M. Wilson, M. Kolberg, and E. H. Magill. Considering side effects in service interactions in home
automation - an online approach. In L. du Bousquet and J.-L. Richier, editors, Feature Interactions in
Software and Communication Systems IX, pages 172–187. IOS Press, Amsterdam, 2007.

