Innovations Syst Softw Eng (2009) 5:181-196
DOI 10.1007/s11334-009-0092-5

ORIGINAL PAPER

Using formal methods to increase confidence
in a home network system implementation: a case study

Lydie du Bousquet - Masahide Nakamura -
Ben Yan - Hiroshi Igaki

Received: 11 March 2009 / Accepted: 5 June 2009 / Published online: 20 June 2009

© Springer-Verlag London Limited 2009

Abstract A home network system consists of multiple net-
worked appliances, intended to provide more convenient and
comfortable living for home users. Before being deployed,
one has to guarantee the correctness, the safety, and the secu-
rity of the system. Here, we present the approach chosen to
validate the Java implementation of a home network system.
We rely on the Java Modelling Language to formally specify
and validate an abstraction of the system.

Keywords Formal methods - Validation by testing -
Home network system

1 Introduction

Emerging technologies enable general household appliances
to be connected to LAN athome. Such smart home appliances

This is a substantially revised version of our paper that appeared in the
proceedings of the Workshop On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), Poitiers-Futuroscope,
France, December 2007.

L. du Bousquet (X))

Laboratoire d’Informatique de Grenoble (LIG),
Universités de Grenoble (UJF), BP 72,

38402 Saint Martin d’Heres cedex, France
e-mail: lydie.du-bousquet@imag.fr

M. Nakamura - H. Igaki

Graduate School of Engineering Science,
Kobe University, Kobe, Japan

e-mail: masa-n@cs.kobe-u.ac.jp

H. Igaki
e-mail: igaki@cs.kobe-u.ac.jp

B. Yan

Graduate School of Information Science,

Nara Institute of Science and Technology, Nara, Japan
e-mail: hon-e @is.naist.jp

are generally called networked appliances. A home network
system (HNS) consists of multiple networked appliances,
intended to provide more convenient and comfortable living
for home users. Research and development of the HNS are
currently a hot topic in the area of ubiquitous/pervasive com-
puting [5,26,41]. Several HNS products are already on the
market (e.g. [30,40]).

A HNS can provide several applications and services.
They typically take advantage of wide-range control and
monitoring of appliances inside and outside the home. Inte-
grating different appliances via a network yields more value-
added and powerful services, which we call HNS integrated
services [24]. For instance, orchestrating a TV, aDVD player,
5.1ch speakers, lights, curtains and an air-conditioner imple-
ments an integrated service, called DVD theater service,
where a user can watch movies in a theater-like atmosphere.

For practical use of such services, it is essential to guaran-
tee the correctness, the safety and the security of the services.
A service should behave as specified (functional correctness).
It must be free from the conditions that can cause injury or
death to users, damage to or loss of equipment or environ-
ment (safety). And it must be protected against malicious
intrusions or hijacking the service (security). For instance, a
RemoteLock service (that checks and locks doors and win-
dows even from outside the home) must be disabled in case
of a fire; otherwise a user might be locked into the room.

In this article, we present the approach we used to specify
and then to validate a set of HNS integrated services that have
been developed by Nakamura et al. [34,35]. Our approach
relies on a Design by Contract strategy [31,32]. The Java
Modelling Language (JML) [21], an executable specification
language, is used for both off-line and on-line validation. Sec-
tions 2-8 are dedicated to the presentation of the approach.
Section 9 describes some related works. Section 10 concludes
on the lessons learnt and draws some perspectives.

@ Springer

182

L. du Bousquet et al.

Design & Specification Level (a)
System
Properties
Informal Validati
System vav :I a :?n
Description esul
System
Model
l When no revision is required.

System Implementation Level

Design & Specification Level (b)

!

Informal
. System
Sysi‘er‘n (EES Properties
Description

System Implementation Lgvel

Implementation
Code

Implementation
Code Vav
(current)

. Implementation
e (e }— ™ S
(revised)

Design & Specification Level (C)

!

Informal System
System Formal
Description Properties

Result Revision

System
Model

Systam Implementation Level

When no revision is required.

Design & Specification Level (d)

Informal System
Description Properties

System Implementation Level

Validation

ey Result

Revision

Abstract
Code

When no revision is required.

Implementation

— Implementation
Code —k@——& Code
(current) (revised)

Implementation

(revised)

Code Abstractiony
(current)

Fig. 1 Different approaches for formal method application. a Classical life cycle, b direct proof of the code, ¢ possible approach, d approach

followed

2 Motivations and chosen approach

The use of formal methods in the development of computing
systems promises better quality in general, and in particular
safer and more reliable systems [20]. Formal methods are
mathematically based, and thus can provide several benefits.
First, they define “what is meant for a design to be correct
with respect to its definition”. It also allows some properties
to be deduced by a process of mechanical logical deduction
[39]. This article is a case study of the use of formal methods
to demonstrate that the current implementation of our HNS
services is correct and safe.

Figure 1a illustrates how formal methods are classically
applied during the development. First, the properties and
a formal model from the system specifications are derived
from the informal description. The model is validated/veri-
fied considering the properties with the help of several kinds

@ Springer

of approaches, such as tests, static analysis, model-checking,
decision procedures. .. [39]. Several revision steps may be
required before being satisfied with the model. Once it is
done, an implementation is derived (possibly automatically).
Some additional validation steps may be required to demon-
strate that the implementation conforms to the model.

In our case, the implementation was available at the begin-
ning of our validation process. The ideal situation would have
been to apply directly formal methods to this implementation
as illustrated in Fig. 1b. Formal properties would have been
derived from the informal description and then compared
directly to the real code. Revisions would have been made
directly on the code. This approach is possible for certain
type of applications and programming languages, especially
with model-checking. In our case, the implementation deals
with a large number of technical libraries. Before being able
to prove the core of the system (i.e. the services), one would

Increase confidence in one home network system implementation

183

have to prove all these libraries. Another approach has then
to be chosen.

At this step, one possible approach would have been to
translate the core of our implementation into a formal lan-
guage on which validation and verification tools could have
been applied (cf. Fig. 1c). Once this model verified, a sec-
ond translation step would have been required in order to
modify our implementation. This approach was not selected
since there was a high-risk of introducing faults during the
two translations phases, which may have led to misleading
conclusions. !

Instead of this approach, we prefer to keep with the imple-
mentation language (Java) and try to focus the validation
on an abstraction of the implementation (cf. Fig. 1d). The
expected properties were expressed in an annotation lan-
guage for Java. Several formal specification languages are
associated with Java, such as Jcontractor? [22,23],] ass’ [3],
or JIML* [27]. For all of them, it is possible to express formal
properties and requirements on the classes and their methods.
We have chosen JML since it has a well-established seman-
tics and since it is recognized by a dozen tools, which sup-
port runtime assertion checking, extended static checking, or
verification [7].

To validate and improve our HNS implementation, we
have carried out the following steps.

1. The core of the application was identified and some
abstractions were carried out. Subsequently, we call the
result of this phase abstract implementation. The real and
the abstract implementations are described in Sects. 3
and 4.

2. The expected properties of the services were deduced
from the informal description. The abstract implementa-
tion was then annotated with JML. This part of the work
is detailed Sect. 5.

3. Several validation steps were carried out. They have two
complementary goals: (1) to detect inconsistencies in
the abstract implementation and to improve correction/
robustness of the services, (2) to improve, to detail or
to correct the JML annotations. Several validation app-
roaches were carried out: test (Sect. 6), static analysis
and deductive proof (Sect. 7).

4. During the validation, the abstract implementation was
modified. A refinement phase was then carried out to
obtain an updated real implementation. Since the final
implementation was not proven, the JML annotations
were left in the new real implementation code in order
to monitor the execution (Sect. 8).

' This has been observed in [16].

2 http://jcontractor.sourceforge.net/.

3 http://csd.informatik.uni-oldenburg.de/~jass/.
4 http://www.cs.ucf.edu/~leavens/IML/.

3 The home network system application
3.1 Introduction to home network system (HNS)

A HNS consists of one or more networked appliances con-
nected to LAN at home. A networked appliance is usually
equipped with smart embedded devices, including a network
interface, a processor and storage. Each networked appliance
has a set of control APIs, so that the user or software agents
can control the appliance via the network. To process the
API calls, each appliance generally has embedded devices
including a processor and storage.

One of the major HNS applications is the integration of
networked home appliances in order to provide services
(called integrated services bellow). An integrated service
orchestrates different home appliances via network in order
to provide more comfortable and convenient living for the
users. For instance, the DVD Theater Service turns on a DVD
player, switches off the lights, selects 5.1ch speakers and
adjusts the volume automatically.

The Relax Service is another example. It integrates a DVD
player, a sound system, a light, an air-conditioner, and an
electric kettle. When the service is started, the DVD player
is turned on with a music mode, a 5.1ch speaker is selected
with an appropriate sound level, the brightness of the light is
adjusted, the air-conditioner is configured with a comfortable
temperature, and the kettle is turned on to a boiling mode to
prepare hot water for tea.

3.2 A framework for implementing HNS integrated services

As the embedded devices become cheaper, smaller, and as
their power consumption is reduced, it is expected in the near
future that more appliances will be networked [19]. However,
transition to networked appliances is gradual. Most people
are still using legacy appliances, which are the conventional
non-networked home appliances.

The use of networked appliances has not yet spread for
several reasons. Networked appliances are expensive and the
selection of available appliances is limited. Due to the inter-
operability problem, the integration of appliances is often
limited, especially in the multi-vendor environment. More-
over, there is a major requirement that the users want to keep
using their own legacy appliances since it is not easy for users
to immediately replace all the existing legacy appliances with
networked ones.

To cope with both the emerging HNS and the legacy
appliances, Nakamura et al. have proposed a framework that
can deal with legacy appliances with conventional infrared
remote controllers [34,35]. The key ideas are (1) to use a pro-
grammable infrared remote controller to control the different
appliances, and (2) to rely on a service-oriented architecture
(SOA) (see [29,36]).

@ Springer

http://jcontractor.sourceforge.net/.
http://csd.informatik.uni-oldenburg.de/~jass/.
http://www.cs.ucf.edu/~leavens/JML/.

184

L. du Bousquet et al.

| Apache AXIS Web Services
| || Iy [N | N g (NN | N g NN | N A | [gy | 1§

Cunaln

v | |C|rmlatcl| Light | CI:anm
Java Classes) T o

JNI Wrapper
Programmable Remore Controller Library

Programmable
Remote Controllers

miniPC

Fig. 3 The showroom of the system presented in Fig. 2

For each appliance, a self-contained component is imple-
mented in Java and deployed as a web service (using Apache
AXIS) (Fig. 2). Methods like On () and OFF () are open
interfaces for accessing the basic features of the appliance.
They use a set of APIs by which the PC can send infrared
signals to the appliances (Ir-APIs). Ir-APIs have been imple-
mented by wrapping the programmable infrared remote con-
troller with a Java Native Interface (JNI Wrapper).

Some HNS applications may need the current status of
an appliance to perform an appropriate action. A typical
example is an energy-saving service, which stops a DVD
player when a TV is turned off. However, the communication
between a user and a legacy appliance is basically one-way
from the remote controller to the appliance. Since it is impos-
sible for the external application to obtain the current status
from the legacy appliance, an appliance component has a
supplementary feature that stores its current state according
to the history of the execution.’ For each appliance compo-
nent,agetStatus () method returns the current state (i.e.,
the attribute values).

5 The status is modified with respect to the executed operation.

@ Springer

Appliance
status

‘F ‘F

DVDstatus DVD

DVDThread

Appliance

DVDservice

HomeTheater
Service

HomeTheater

é

Service

Fig. 4 The class organisation in the real implementation

A HNS is installed in an environment, which can be
described as a set of attributes. They include the current
energy consumption, the sound level, the temperature, etc.
Their values can be obtained via sensors (such as thermo-
meter, fire detector...), which are implemented as web service
like other appliance components.

3.3 The real implementation

Figure 3 presents the showroom of Kobe University. The dif-
ferent integrated services can be activated and deactivated
thanks to a specific interface.

Figure 4 describes how the implementation classes are
organised. In order to simplify, only one appliance (a DVD
player) and one service (HomeTheater) are represented in
this diagram. Drivers and libraries are not described.

All appliances such as the DVD player inherit from the
Appliance class. All integrated services such as Home-
Theater inherit from the Service class. For each appli-
ance and each integrated service, there is (1) a basic Java class
to encode the expected behaviors (resp. DVD and HomeThe-
ater) and (2) a class that exports the methods for
Tomcat/Axis (resp. DVDService and HomeTheater
Service). The status of the appliance is described through
a specific class (ApplianceStatus) and specialised for
each of them (e.g. DVDstatus). The integrated services use
the appliances through Threads.

The showroom of Kobe University deals with nine types of
appliances and four integrated services. The core of the appli-
cation (described in Fig. 4) represents 9000 lines of code,
among which 1000 for the Status classes, 7000 for appli-
ance classes, threads and associated services (classes like
DVD, DVDThread, and HomeTheater) and 1000 for inte-
grated services (classes like HomeTheaterService and
DVDService).

Increase confidence in one home network system implementation

185

4 Providing an abstract implementation

An application such as our HNS cannot be easily tested or
proven. For proof, one problem comes from the complex-
ity of the system. The core of the application (the services)
is embedded in a technical framework, composed of driv-
ers and web-service management. For testing, one problem
is related to the fact that services may behave with respect
to the environment. For instance, the light level might be
adjusted with respect to the light intensity measured in the
room. To provide relevant tests, one needs to influence the
state of the environment. Another point is that the appli-
ances may be damaged if they are too much solicited during
a test.

To ease the process of validation, we have then built an
abstraction from the real implementation. The aim of this
part is to detail how it was done.

4.1 Abstraction of the environment

In the real application, the environment state is captured
thanks to sensors that are implemented as appliances. For
instance, the current temperature is measured by connected
thermometer(s). For the abstract level, we introduce a specific
class, called HomeEnvironment, to capture the environ-
ment state. This class includes several attributes represent-
ing, respectively, the temperature, the light intensity, current
consumption, the time and so on. It also includes public meth-
ods to change the environment state. The environment can
be changed either by an appliance when it changes its state
(the light intensity of the environment changes when a light
is switched-on), or during a test sequence (to initialize the
environment, for instance).

A Home class was also introduced. It corresponds to a
particular configuration of the HNS. From the Home inter-
face, it is possible to call any public methods of the integrated
services, appliances and environment.

4.2 Abstraction of the appliances

Two main abstractions were carried out for the appliances.
A first abstraction consists in replacing part of the code related
to the remote controller into simple printing message calls,
as it is shown for the switchOn method of the TV class.
The original code is given in Fig. 5 and the abstract one
is given in Fig. 6. This abstraction allows you to validate
the appliance classes independently from the remote control
drivers.

An abstraction of the status was also performed. For the
real implementation, the status is encoded with a specific
class that is specialized with respect to each type of appli-
ance. The main attribute of the status class is a String. At the
abstract level, the status is encoded with a simple attribute of

public void switchOn(void) {
/* Controller and signal objects of Ir-API */
IrControler con = new IrController();
IrSignal sig = new IrSignal();

/* set signal ON for TV_A and send it */
sig.setSignalType (SWITCH_ON, TV_A);
con.sendSignal(sig) ;
sleep(2);
state="0N";

}

Fig. 5 Real implementation of the method switchOn () for TV_A

public void switchOn(void) {
System.out.println("SWITCH_ON, TV_A");
internalState="0N";

}

Fig. 6 Abstraction of the method switchOn () for TV_A

public void switchOn(void) {
if (powerState.equals("ON")) {
setApplianceConsumption(maxConsumption) ;
System.out.println("SWITCH_ON, TV_A");
internalState="0ON"; }
}

Fig. 7 Evolution of method switchOn () for TV_A in the model

type String. This allows you to validate each appliance class
with a limited set of dependencies among the classes.

The real implementation did not take into account the fact
that appliances can be powered on or off. The internal state
of appliances and the code of some methods were completed
to deal with the power state. In order to synchronize the
appliances with the environment, we introduce some code
that describes their impact on the environment. For instance,
when the TV is switched on, the current consumption is
increased in the environment (see Fig. 7).

4.3 Abstraction of the integrated services

The real implementation of the integrated services concerns
threads and exceptions. It also uses the “log4j” library in
Apache, to log all the events. At the abstraction level, the
code of the integrated services deals only with the statements
necessary to achieve the expected scenarios. The integrated
services are connected to the environment thanks to their
inheritance with the Service class. Figure 8 shows the abstrac-
tion of the DVD Theater service.

Figure 9 shows the class organisation of the abstractimple-
mentation. Appliances still inherit for the App1lianceclass,
and integrated services inherited from the Service class.

@ Springer

186

L. du Bousquet et al.

public class DVDtheater extends Service{
private DVD dvd;
private TV tv;
private Blind blind;
private Light light;
private Speaker speaker;

public DVDtheater (DVD dvdO,TV tvO,
Blind blindO, Light 1lightO,
Speaker speaker0){

sp = "OFF"; //state of the service

dvd=dvdoO;

tv=tv0;

blind=blindO;

light=1ightO;

speaker=speaker0;

void activation() {
/* TV is switched on */
tv.powerOn() ;
tv.switchOn();
tv.setSoundIntputMode ("DVD") ;

/* DVD player is swtiched on */
dvd.powerOn() ;

/* Speakers are switched on */
speaker.powerOn() ;

speaker.setIntputSource ("DVD") ;
speaker.setApplianceVolume (10) ;

/* bind is closed */
blind.powerOn() ;
blind.Close();

/* brightness is minimisedx/
light.powerOn() ;
light.setBrightnessLevel(2);

/* play the dvd*/
dvd.Play();

void deactivation() {
tv.switchOff();
tv.power0ff();

dvd.switchOff();
dvd.power0ff () ;

speaker.switchOff();
speaker.power0ff () ;

light.power0Off () ;
}
}

Fig. 8 Abstraction of the DVD theatre service

Threads are not introduced and, thus, integrated services
directly call the appliance methods. There are no classes for
exporting the services as in the real implementation.

@ Springer

[
Home
Environment

Appliance

?
DVD 4?—‘

HomeTheater

J;

Service

abstract implementation part for testing

Fig. 9 The class organisation in the abstract implementation

4.4 New appliances and services

The abstract implementation of the real system was also used
to implement and validate new appliances and integrated ser-
vices, not yet present in the Japanese showroom. New appli-
ances such as an electric kettle, a gas valve, or a hot water
system were thus added. It was possible to introduce new inte-
grated services such as the Relax Service (see Sect. 3.1) or the
Cooking Preparation Service (that prepares the kitchen for
cooking). Our current abstract implementation is composed
of 25 classes among which there are 14 appliance compo-
nents, 7 integrated services, the HomeEnvironment, the
Home, the Appliance and the Service classes.

5 Specifying the HNS integrated services

Before providing a HNS and integrated services, one must
guarantee that the implementation is correct and “safe” for
inhabitants, properties and their surrounding environment.
This section is dedicated to the expression and formalisation
of the requirements.

5.1 Requirements at different levels

In Nakamura et al. [42], have identified three levels of
requirements for integrated services.

For every electric appliance, the manufacturer prescribes a
set of safety instructions for proper and safe use of the appli-
ance. Traditionally, these instructions have been written for
human users. In the HNS integrated service, the instructions
must be guaranteed within the software. For instance, the
following shows a safety instruction for an electric kettle: do
not open the lid while the water is boiling, or there is a risk

Increase confidence in one home network system implementation

187

of scalding. Any integrated service using the kettle must be

implemented so that it will never open the lid while the kettle

is in the boiling mode.

Since an integrated service orchestrates different multiple
appliances simultaneously, it is also necessary to consider
global properties of the multiple appliances. For instance,
the Cooking Preparation Service (which automatically sets
up the kitchen configuration for preparing for cooking) must
avoid carbon monoxide poisoning. While the gas valve is
opened, the ventilator must be turned on.

In general, each house has a set of residential rules for its
inhabitants’ and neighbours’ safety. Since the integrated ser-
vices have various impacts on the surrounding environment
(including the room, the building, the neighbours, etc), the
services must satisfy these rules. For instance, do not make
loud voice or sound after 9 p.m.

An integrated service is locally correct if and only if it sat-
isfies all local properties, i.e. all properties derived from the
appliance instructions. It is globally correct if and only if it
satisfies all properties prescribed for it. It is environmentally
correct if and only if it satisfies all properties derived from
the environment where it is provided.

Let s be a given integrated service, and
— let App(s) = {di,d>,...,d,} be a set of networked

appliances used by s,

— let Local Prop(d;) = {Ipi1,Ipi2,...,Ipim} be a set of
local properties derived by the instructions of the appli-
ance d;,

— For a service s, the set of local properties is
Local Prop(s) = Ug;eapp(syLocal Prop(d;),

— let Global Prop(s) = {gp1,8&p2,--., &Pk} be a set of
global properties prescribed by s,

— let EnvProp(s) = {ep1, epa, ..., ep;} be a set of envi-
ronment properties derived from the environment where
s is provided.

[Local Correctness:] s is locally correct if and only if s
satisfies all properties in Local Prop(s).

[Global Correctness:] s is globally correct if and only if s
satisfies all properties in Global Prop(s).

[Environment Correctness:] s is environmentally correct if
and only if s satisfies all properties in Env Prop(s).

5.2 Brief description of JML

The JML is an annotation language used to specify Java pro-
grams by expressing formal properties and requirements on
the classes and their methods (see [27]).

The JML specification appears within special Java com-
ments, between /*@ and @ */ or starting with //@. The spec-
ification of each method precedes its interface declaration.
JML annotations rely on three kinds of assertions: class

invariants, pre-conditions and post-conditions. Invariants
have to hold in all visible states. A visible state roughly cor-
responds to the initial and final states of any method invoca-
tion [21]. JML relies on the principles of Design by Contract
defined Meyer [31,32], which states that to invoke a method,
the system must satisfy the method pre-condition, and as a
counterpart, the method has to establish its post-conditions.
A method’s precondition is given by the requires clause. If
that is not true, then the method is under no obligation to
fulfil the rest of the specified behavior.

JML extends the Java syntax with several keywords.
\result denotes the return value of the method. It can
only be used in ensures clauses of a non-void method. \old

(Expr) refers to the value that the expression Expr had in
the initial state of a method. \forall and \exists desig-
nate universal and existential quantifiers. The JML compiler
(jmlc) translates the annotated Java code into instrumented
bytecode to check if the Java program respects the specifica-
tion.

5.3 Using JML to express the expected properties

We have used the JML assertions for two purposes. First it
was used to check consistency of the model. Second, it was
used to express explicit requirements (such as those given in
Sect. 5.1).

As explained previously, we have derived an abstract
implementation from the real one, and have modified it, espe-
cially at the appliance level. In order to increase confidence
with respect to those modifications, we have introduced JML
assertions dedicated to the appliance internal state consis-
tency specification. Those assertions can be both expressed
as invariant and post-conditions. Figure 10 describes a part
of the Appliance object code. The powerState and
the internalState are specified by four invariants given
lines 6-9. The evolution of those attributes is specified as
post-conditions associated with each method (e.g. lines
26-27 and 43-44).

The implementation of local, global and environment
properties were done systematically. Local properties were
described both as pre-conditions and invariants in the appli-
ance objects. For example, for the electric kettle, the require-
ment “do not open the lid while the water is boiling, or there
is a risk of scalding” is expressed as an invariant stating that
the lid should be closed when the kettle is heating:

public invariant ((heatingMode.equals (“ON”)
&& powerState.equals (“ON”))==>

lidStatus.equals (“"CLOSE”)) ;

Moreover, to prevent any misuse of the kettle, we state
that the lid should be open only if it is not heating. As a
pre-condition of the openLid method, we have

requires heatingMode.equals (“OFF”) ;

@ Springer

188

L. du Bousquet et al.

1 public

//@ public

//@ public

//@ public

//@ public
10

protected /

// consumpt
//@ public
//@ public
//@ public
//@ public
//@ public

15

20 protected /
protected /

protected /

//@
//@
//@
//@
//@
//@

25 ensures
ensures
ensures
ensures
ensures

30

invariant
invariant
invariant
invariant

*Q

ion

invariant
invariant
invariant
invariant
invariant

*Q
*Q
*Q

requires (minPower <= maxPower)

spec_public

spec_public
spec_public
spec_public

class Appliance {
protected /*@
protected /*@
protected /*@

spec_public @*/ String Name; // used for printing messages
spec_public @*/ String powerState =
spec_public @*/ String

"OFF";
internalState = "OFF";
(!powerState.equals("0OFF") ==> powerState.equals("ON"));
(!'powerState.equals("ON") ==> powerState.equals("OFF"));
(!internalState.equals("0OFF") ==> internalState.equals("ON"));
(linternalState.equals("ON") ==> internalState.equals("OFF"));

non_null @/ HomeEnvironment currentEnv ;

minConsumption<=maxConsumption;
minConsumption >= 0 ;

applianceCurrentConsumption>=0 && applianceCurrentConsumption<=maxConsumption;
powerState.equals("ON") ==> (applianceCurrentConsumption >= minConsumption);
powerState.equals("OFF") ==> (applianceCurrentConsumption == 0);
@*/ int
@/ int
@+/ int

maxConsumption=0;
minConsumption=0;
applianceCurrentConsumption=0;

&& (minPower >=0);

(maxConsumption == maxPower) && (minConsumption == minPower);
powerState.equals("ON");

internalState.equals("OFF");

applianceCurrentConsumption == minPower;

currentEnv

!= null ;

public Appliance(int minPower, int maxPower){

currentEnv =

Name =

maxConsumption =

35

powerState =

minConsumption =

"ON";

new HomeEnvironment () ;
"Appliance";

maxPower;
minPower;

internalState = "OFF";

applianceCurrentConsumption =

40 3

minPower;

//@ ensures powerState.equals("ON");
//@ ensures internalState.equals("OFF");

45

public /%@

int preVal =

50

//@ ensures applianceCurrentConsumption ==

spec_public
applianceCurrentConsumption;

powerState="0N";

applianceCurrentConsumption =

minConsumption;

@x/ void powerOn(){

internalState = "OFF";

minConsumption;

currentEnv.updateConsumption(minConsumption - preVal);
System.out.println(Name + " is powered on");

55 }
[...]

Fig. 10 Appliance class annotated with JML

Global properties generally express the expected behaviour
of the service. If it is the case, they are expressed as
post-conditions of the method. For instance, it is expected
that the DVDTheater service activation results in switching
on the TV. As a post-condition of Act ivation method, we
state that

ensures (tv.getStatus().equals(“ON”")) ;

@ Springer

For cookingPreparation service, the property “while the
gas valve is opened, the ventilator must be turned off’ is
encoded as an invariant:

public invariant gasValve.getStatus().
equals (“OPEN")
(ven.getPower () .equals (“*ON”)
ven.getStatus () .equals (“ON")) ;

==> &&

Increase confidence in one home network system implementation

189

Environment properties were expressed in the Home-
Environment class, as invariants. For instance, let us
consider that the maximum power consumption should not
be greater than 30 amperes. This is expressed as

//@ public invariant (getConsumption ()

<= 30);

This property is relevant in our abstract implementation
since for each time an appliance is solicited, the powerCon-
sumption of the environment is updated.

In our abstract implementation, we have inserted 209 JML
annotations (17 pre-conditions, 150 post-conditions, and 42
invariants).

6 Validation by test

At this point, we want to demonstrate that the abstract imple-
mentation conforms to the executable specification. Thanks
to the choice of JIML, several types of approaches can be fol-
lowed in order to achieve the validation. In this section, we
report the work done with a testing tool. Since JML specifi-
cations can be used as an oracle for a test process, we have
used a combinatorial testing approach to generate test data.
Here, we first cover some principles of testing with JML,
before introducing our approach for combinatorial testing.

6.1 JML as a test oracle

JML is executable. It is possible to use invariant assertions,
as well as pre- and post-conditions as an oracle for confor-
mance testing. JML specifications are translated into Java by
the jmlc tool, added to the code of the specified program,
and checked against it, during its execution.

The executable assertions are thus executed before, dur-
ing and after the execution of a given operation. Invariants
are properties that have to hold in all visible states. A visi-
ble state roughly corresponds to the initial and final states of
any method invocation [21]. When an operation is executed,
three cases may happen. All checks succeed: the behaviour
of the operation conforms to the specification for these input
values and initial state. The test delivers a PASS verdict.

An intermediate or final check fails: this reveals an
inconsistency between the behaviour of the operation and
its specification. The implementation does not conform to
the specification and the test delivers a FAIL verdict.

An initial check fails: in this case, performing the whole
test will not bring useful information because it is performed
outside of the specified behavior. This test delivers an INCON-
CLUSIVE verdict. For example, +/x has a precondition that
requires x being positive. Therefore, a test of a square root
method with a negative value leads to an INCONCLUSIVE
verdict.

6.2 Principles of the test case generation

Combinatorial testing performs combinations of selected
input parameters values for given operations and given states.
For example, a tool like JML-JUnit generates test cases
which consist of a single call to a class constructor, followed
by a single call to one of the methods (see [11]). Each test
case corresponds to a combination of parameters of the con-
structor and parameters of the method.

The LIG laboratory has developed Tobias [6,28], a test
generator based on combinatorial testing [12]. It adapts com-
binatorial testing to the generation of sequences of operation
calls. The input of Tobias is composed of a test pattern (also
called test schema) which defines a set of test cases. A schema
is a bounded regular expression involving the Java methods
and their associated JML specification. Tobias unfolds the
schema into a set of test cases: all combinations of the input
parameters for all operations of the schema are computed.
The test suite can be turned into a JUnit file thanks to Tobias.

The schemas may be expressed in terms of groups, which
are structuring facilities that associate a method, or a set of
methods, to typical values. Groups may also involve sev-
eral operations. For instance, let us consider the Blind class.
It has four main methods (powerOn (), powerOff (),
Open (), and Close()) and several constructors (but
for the following we only consider the simplest one
Blind ()). For testing the Blind class, one can design the
following schema:

T-Blind=Init ; BlindOp~{4..4} with
Init={Blind aBlind = new Blind()}

BlindOp = {aBlind.powerOn () }U
{aBlind.powerOff ()} U {aBlind.Open ()}
U{aBlind.Close ()}

The Schema is unfolded in Tobias tool and can be viewed in
an intermediate format (see Fig 11). Init is a set of only
one instantiation. B1indOp is a set of four instantiations.
The suffix " {4. .4} means that the group is repeated four
times. T-Blind is unfolded into 1*(4*4*4*4) = 256 test
cases. It is then possible to produce an executable JUnit file
(see Fig. 12).

6.3 Validation of the abstract implementation

To validate our abstract implementation, we have designed
several test schemas corresponding to different phases in the
validation process. First, each appliance was tested in isola-
tion (with schema such as T-Blind presented above) and in the
context of the home. Schemas similar to T-B1 ind were pro-
duced for each appliance. Those schemas allow you to reach
100% of statement coverage for each appliance component.

@ Springer

190

L. du Bousquet et al.

Blind
Blind
Blind
Blind
Blind
Blind

DU WN

255. Blind
256. Blind

aBlind
aBlind
aBlind
aBlind
aBlind
aBlind

aBlind
aBlind

= new
= new
= new
= new
= new
= new

= new
= new

Blind();
Blind Q) ;
Blind();
BlindQ);
Blind();
BlindQ);

Blind();
Blind();

aBlind.
aBlind.
aBlind.
aBlind
aBlind
aBlind

aBlind.
aBlind.

powerOn(); aBlind.powerOn(); aBlind.powerOn(); aBlind.powerOn();
powerOn(); aBlind.powerOn(); aBlind.powerOn(); aBlind.powerOff();
powerOn(); aBlind.powerOn(); aBlind.powerOn(); aBlind.Open();

.powerOn(); aBlind.powerOn(); aBlind.powerOn(); aBlind.Close();
.powerOn(); aBlind.powerOn(); aBlind.powerOff(); aBlind.powerOn();
.powerOn(); aBlind.powerOn(); aBlind.powerOff(); aBlind.powerOff();

Close(); aBlind.Close(); aBlind.Close(); aBlind.Open(Q);
Close(); aBlind.Close(); aBlind.Close(); aBlind.Close();

Fig. 11 Abstract representation of the 256 test cases produced from T-Blind

import junit.framework.TestCase;

import junit.framework.;
public class Testsuite_T-Blind extends TestCase {

static int nb_inc =

0

static int nb_fail =

B
H

public static void main(String args[]) {
junit.textui.TestRunner.run(new junit.framework.TestSuite(Testsuite_T-Blind.class));
System.out.println("inconclusive tests: "+Testsuite_T-Blind.nb_inc);
System.out.println("failures

public void testSequence_1(){

try{

Blind aBlind = new Blind();

aBlind.powerOn();
aBlind.powerOn() ;
aBlind.powerOn() ;
aBlind.powerOn();

"+Testsuite_T-Blind.nb_fail);

} catch(org. jmlspecs. jmlrac.runtime.JMLEntryPreconditionError e$){

System.out.println("\n INCONCLUSIVE "+

(new Exception().getStackTrace() [0].getMethodName())+ "\n\t "+ e$.getMessage());
Testsuite_T-Blind.nb_inc++;

}

catch(org. jmlspecs. jmlrac.runtime.JMLAssertionError e$){ // test failure
int 1$ = org.jmlspecs.jmlrac.runtime.JMLChecker.getLevel();
org. jmlspecs. jmlrac.runtime.JMLChecker.setLevel (org. jmlspecs. jmlrac.runtime.JMLOption.NONE) ;

public

try {

Testsuite_T-Blind.nb_fail++;
junit.framework.Assert.fail("\n\t" + e$.getMessage());

}

finally {
org.jmlspecs. jmlrac.runtime.JMLChecker.setLevel (1$);

Y

try{

void testSequence_2(){

Blind aBlind = new Blind();

aBlind.powerOn()
aBlind.powerOn() ;
aBlind.powerOn() ;
aBlind.power0ff();
}o.o.

Fig. 12 JUnit file produced from T-Blind

Appliance isolation testing revealed several INCONCLU- schemas, the openLid method of the kettle can be called
SIVE verdicts because some pre-conditions of some opera- whenitis in the boiling mode. This is not supposed to be done
tions were not satisfied. For instance, within the kettle test ~ due to the kettle’s local properties. These INCONCLUSIVE

@ Springer

Increase confidence in one home network system implementation

191

verdicts were expected each time some specific local prop-
erties were implemented. They correspond to a usage of the
appliance that does not conform with its manual.

Appliance isolation testing also revealed several FAIL ver-
dicts, which were not expected. A careful analysis showed
that appliance implementations were sometimes inconsis-
tent with the JML assertions. Those inconsistencies resulted
mainly in the evolutions of the model and the specification,
which was sometimes not completely carried out.

In a second phase, we have focused on the integrated ser-
vice validation. The main objective was to activate each ser-
vice in different situations (in order to be sure that a service
can be activated in any cas). Two types of test sequences were
produced and executed. Both sets of tests were composed of a
prologue followed by the activation of the service under test.
Those schemas made it possible to reach 100% of statement
coverage for each service component.

The first set of tests was dedicated to the service activa-
tion’s validation with respect to the different appliance states.
To do that, the test prologue consisted of three or four differ-
ent calls to one appliance. This was aimed at checking that
the services could work correctly whatever the state of each
appliance (taken independently). For example, the following
schema TS-vs-Blind initializes the home, put the blind
in a specific state and then activates DVDtheatre or Relax
services.®

TS-vs-Blind=1Init ; BlindOp~{4..4} ; S-Ac with
Init = {Home aHome = new Home ()}

B1indOp = {aHome .blindPowerOn () }U
{aHome .blindPowerOff ()} U {aHome.blindOpen ()}
U{aHome .blindClose ()}

S-Ac = {aHome .DVDTheatreActivation () }U
{aHome .RelaxServiceActivation()}

This type of test sequences allowed us to detect that some
calls or checks were forgotten for some services. For instance,
in the RelaxService, the kettle was not closed before switch-
ing on. This problem was not discovered during preliminary
tests because when the kettle object s created, its lid is closed.
By applying several consecutive calls on the kettle before
activating the RelaxService, we were able to discover the
implicit requirement about the kettle lid. We corrected the
service by systematically closing the lid before switching it
on.

The second test set was dedicated to the service activation
validation against different environment states (temperature,

6 As indicated Sect. 4.3, at the abstract level, a Home object is used to
configure a specific home configuration. At the home level, it is possible
to access to all public methods of the appliance and the services. It is
also possible to configure the environment.

time, sound level, current consumption, etc.). To do that,
the prologue consisted of applying different parameters to
the environment attributes (thanks to the public methods
suchas set_temperature (int)). This aimed at check-
ing that the service could work correctly whatever the state
of the environment. For example, the following schema
T-Service-vs-time initializes the home, set the cur-
rent time and then activates DVDtheatre or Relax services.
S-Ac with

T-Service-vs-time=1Init ; timeOp ;

Init = {Home aHome = new Home ()}
timeOp = {aHome.set_time (val)}
val={2,8,12,15, 18,22}

S-Ac = {aHome . DVDTheaterActivation () }U
{aHome .RelaxServiceActivation ()}

Two environmental properties were stated in our system with
respect to the loud sound (“do not make loud voice or sound
after 9 p.m.”) and the power consumption (“the maximum
power consumption should not be greater than 30 amperes”.).
These were not taken in to account by real implementation,
and thus six errors were found.

Five errors are related to the five services that switch on
some appliances. By choosing a initial power-consumption
near by 30 amperes, it is possible to make those services vio-
lating the power-consumption property. To make the services
consistent with this requirement, the power-consumption
should be checked before switching on any appliance.

One error is related to the DVD Theater Service that vio-
lates the environment property “do not make loud voice or
sound after 9 p.m.” if it is activated after 9 p.m. To make the
DVD Theater Service consistent with this requirement, one
has to modify the implementation so that the sound level is
adjusted with respect to the time.

More than 30 test schemas were described and unfolded
in the Tobias plug-in for Eclipse. Schemas were unfolded
in test suites, having between 500 and 5000 test cases. The
unfolding phase lasts at most 2 min for the biggest schemas.’
Test cases then were translated in the JUnit format and exe-
cuted within the Eclipse environment. It took at most 500s
for the biggest sets of test cases. Ten errors were found at
the appliance and service levels (local and global proper-
ties). The statement coverage was checked with EclEmma
plug-in.®

7 Tobias was executed on a laptop, equipped with a 1.5GHz processor
and 512 MO of RAM, with Window XP OS.

8 http://www.eclemma.org/.

@ Springer

http://www.eclemma.org/.

192

L. du Bousquet et al.

7 Verification by extended static checking or proof
7.1 Tools for verification

Several tools can be chosen to carry out verification. During
our experimentation, we used two of them:

ESC/Java 2 and KeY.

ESC/Java® is an Extended Static Checking tool [17]. The
verification is static since the code is verified without being
executed. It is extended since the tool detects more errors
than can be detected with traditional static analysis.

ESC/Java 2 uses automatic theorem-proving techniques to
reason on the program semantics. It raises warnings in case
of classical runtime errors, such as null dereferences, array
bound errors, type cast errors etc. It also warns about syn-
chronization errors in concurrent programs (race conditions
and deadlocks). Finally, ESC/Java 2 issues warnings if the
source code violates the JML assertions.

The KeY '° system is a formal software development tool
that aims to integrate design, implementation, formal speci-
fication, and formal verification of object-oriented software
as seamlessly as possible [1,4]. At the core of the system is
a theorem prover for the first-order Dynamic Logic for Java.
The tool has an easy-to-use graphical interface and seam-
lessly integrates automated and interactive proving.

7.2 Using ESC/Java 2

ESC/Java 2 was the first tool to be used during the proof
process. The verification was carried out on the code, which
was tested and corrected. The verification of the Java classes
was long and not easy. Even if the JML assertions were used
during the test, they were not enough to allow an automatic
verification.

The first ESC/Java 2 warnings were obtained for
Appliance.java. They were related to the use of set
methods of HomeEnvironment . java. The use of these
methods in Appliance.java could lead to a violation
of HomeEnvironment assertions. In order to solve the
problem and to simplify the relation between the appliances
and the environment Appliance.java class had to be
refactored. This operation impacted all sub classes of
Appliance.java.

Then, to remove several warnings, several JML asser-
tions had to be inserted. Indeed, several post-conditions were
added to specify the type of the returned result. For instance,
to the method public String getPower (), the

9 ESC/Java can be downloaded at http://kind.ucd.ie/products/
opensource/ESCJava2/download.html.

10 KeY can be downloaded at http://www.key-project.org/download/.

@ Springer

following postcondition was added //@ ensures
\ result.equals (powerState);.

Several warnings were related to the problem of null val-
ues. Some assertions were added in order to specify that the
variables or the attributes (of type String) were not null. For
instance, for Appliance classes, in lines 3 and 4 given in
Fig. 10, expressions /*@ spec_public @*/ were
replaced by /*@ spec_public non_null @*/.
Moreover, all constructors of appliances were modified in
order to initialize all attributes explicitly as it is done for
Appliance class.

After the code refactoring, the code size represents 2400
lines of code. The new JML assertions represent more than
600 lines of code. At the end of the process, all appliance
and service properties seemed to be validated: there were no
remaining warning. However, one has to be careful. ESC/Java
2 is neither complete nor sound. Some errors may not be
reported and false alarms may be reported.

7.3 Using KeY

Proving the application with KeY was not as successful as
expected. The verification could be carried out only for the
file HomeEnvironment . java. The main reason was that
the JML assertions deal with strings, which are not currently
supported by Key.

In this version, the class HomeEnvironment . java
has 27 methods (1 constructor, 11 get methods, 15 set meth-
ods) and 3 invariants. Each get method has been declared as
pure. Half of the set methods were associated with a pre-
condition. None of them has a postcondition. KeY produced
between 3 and 5 proof obligations for each method. All of
them were proved. Most of them were proved automatically
with Simplify or Yices provers. For three methods, the “ele-
mentary arithmetic strategy’ has to be used. For one method,
we have to increase the number of computing steps (1100
instead of 1000 by default).

7.4 Analysis of the verification process

From a general point of view, the validation of the code with
ESC/Java 2 required more work than expected for two rea-
sons. First, the code of appliance API and integrated services
is quite simple (no loop for instance), so it was expected that
the verification would be easy. Second, it was expected that
the assertions and the code were consistent, since the code
was previously intensively tested.

We can distinguish two types of works done to support
the verification process. First, code and an implementation
compatible with the tool abilities had to be provided. During
our experiment, we have to refactor both the code and the
Java implementation in order to carry out verification with
ESC/Java 2. It mainly consisted in a simplification of the

http://kind.ucd.ie/products/opensource/ESCJava2/download.html.
http://kind.ucd.ie/products/opensource/ESCJava2/download.html.
http://www.key-project.org/download/.

Increase confidence in one home network system implementation

193

public class TVservice {
TV tv = new TVQ);

public boolean up_vol(int vol) {
try {
tv.up_vol(vol);
}
catch (org.jmlspecs.jmlrac.runtime.
JMLEntryPreconditionError e) {
System.out.println("TV: precondition error");
}
}

Fig. 13 New TVService class

coupling of the methods and classes. Second, one may have
to add specific assertions to help the tools. For this applica-
tion, the assertions to be inserted were mainly related to null
values. It also concerned some indications of the value of the
return results.

It must be noticed that a large effort was required to adapt
the code and the JML specification to the verification process.
However, it was not possible to relate the warnings obtained
with ESC/Java 2 to any bug in the code or in the specification.
It seems that improvements only restructured the code and
increased the redundancy of the specification.

8 On-line monitoring

During the process of validation, we improved our JML spec-
ifications and the code of the abstract application. The final
step of the approach was to update the final implementation
as presented in Fig. 1d.

To do that, we started from the Java files of the abstract
implementation, organised as described in Fig. 8. We
re-introduced the code necessary to manage the remote con-
troller. This step corresponds to the “refinement” step. The
Java files of the real implementation were replaced by the
new Java files of the abstract level with the same name, and
were compiled with the jm1c compiler. The classes used for
exporting the component as services were modified in order
to catch the JML exceptions, as it is illustrated in Figs. 13 for
TVService class. The JML assertion mechanism is embedded
in the final system. So if the system is in a state that is incom-
patible with the pre-conditions of a service that is executed,
a JML exception is raised and the execution of the service is
suspended. The showroom of Kobe university has been con-
trolled with this new system in order to check the feasibility
of the approach. One of our perspective now is to measure
the reliability of the first and the second implementations, in
order to evaluate how much it was improved by the process.

9 Related work

Service oriented architecture (SOA) is used for creating
modern services and systems. But lack of confidence prevents

its adoption by mainstrain service computing. A key issue is
thus to provide all actors the means to check that a service
delivers the expected function with the expected quality of
service (QoS) [10,13].

In the introduction, we underline the fact that for practical
use of such services, it is essential to guarantee the correct-
ness, the safety and the security of the services. In this article,
we have focused on correctness and safety. In [2], Balfe et al.
examine useful properties for security in the context of per-
vasive environment. In [9], Candolin presents some security
requirements in the context of service-oriented architecture.
A security framework is presented as part of a security archi-
tecture for network centric environment. In [15], Dragoni
et al. advocate the notion of security-by-contract as a solu-
tion to pervasive download problems. The idea is that each
application to be downloaded should come with a contract
containing the description of the relevant features. Only an
application matching the platform security policy will be
allowed to be downloaded.

About correctness, a large amount of works focus on ser-
vice composition (orchestration or choregraphy) of (web)
services. In [37], challenges and solutions for model-driven
web service composition are described. [8,18,33,38,43]
focus on formal verification of the composition. For instance,
in [33], the services specification (in Web Service Flow
Language—WSFL) are translated into Promela. Properties
such as reachability and deadlock freedom are expressed in
LTL. They are verified thanks to the SPIN model-checker.
In [43], the verification of properties such as liveness and
reachability is performed thanks to petri-nets. In [38], SMV
is used to detect such properties in the context of telephony
services.

All those approaches use a specification language, very
different from the service implementation language. This
means that one has to deal with at least two (very) different
languages. In our approach, the model is abstract from the real
implementation. It is expressed in Java like the implementa-
tion. Moreover, the expected properties are expressed also in
a Java-like language. This eases the process of specification.

We have chosen a formal method approach based on con-
tracts. The use of contract is suggested by practitioners as a
help for service design.!!12-13 Contracts have also been used
for formally specified web services [25,14]. The contracts
were especially used as a testing oracle and for monitoring
in [14].

1 http://dev2dev.bea.com/blog/bhensle/archive/2007/04/
soa_and_design.html.

12 http://archive.devx.com/javaSR/articles/smith1/smith1p.asp.

13 http://www.myarch.com/design-by-contract-for-web-services.

@ Springer

http://dev2dev.bea.com/blog/bhensle/archive/2007/04/soa_and_design.html.
http://dev2dev.bea.com/blog/bhensle/archive/2007/04/soa_and_design.html.
http://archive.devx.com/javaSR/articles/smith1/ smith1p.asp.
http://www.myarch.com/design-by-contract-for-web-services.

194

L. du Bousquet et al.

10 Summary, lessons learnt and perspectives
Summary

Home network systems are critical applications. Before
becoming widespread, it is essential to guarantee the cor-
rectness, the safety and the security of the services. In this
article, we express the correctness and the safety properties
as assertions. The use of JML makes it possible to embed
them into the Java code. It was possible to use the assertions
as an executable test oracle and use it as a specification to be
conformed to in a verification process.

During the experimentation, we derived an abstraction of
the real implementation. This was necessary before being
able to carry out tests and proofs. It allows us also to exper-
iment new types of appliances and new integrated services.
The specification was composed of 209 JML annotations (17
pre-conditions, 150 post-conditions, and 42 invariants). The
abstract implementation was composed of 14 appliances and
7 integrated services. It was tested with combinatorial tests.
Testing allowed us to detect 16 errors. Ten errors were related
to local and global properties (inconsistencies between the
code and the specification, corrected during the process). Six
errors were related to the environmental properties that were
not taken into account by the real implementation.

Tools for static extended checking and deductive proof
were also experimented. In order to check the abstract imple-
mentation, refactoring had to be carried out for both code and
assertions. It is still not clear to us if the refactoring has to
be carried out in order to help the tools or in order to correct
some remaining errors.

The abstract code was then refined and finally executed in
the real implementation context. The assertions were used to
monitor the execution of the showroom.

Lessons learnt

The main objective of our work was to find some solutions
to establish the correctness of a real implementation of a
home network system. An application such as our HNS can-
not be easily tested or proved, either because the system is
too complex to be proved, or because services may behave
with respect the state of the environment (e.g. temperature),
which cannot be easily influenced with software tests.

In order to carry out the validation and verification, we
choose to build an abstraction of the implementation. One les-
son is that the choice of the level of abstraction is very impor-
tant. During this study, we mainly carried out an abstraction
on the web-service technology, the drivers and the environ-
ment. Now, it is clear to us that this abstraction was more
important than necessary for the testing phase. For instance,
the abstraction on the drivers was not necessary (it would
have been possible to execute the same tests with the drivers).

@ Springer

However, it is also clear that the abstraction was not enough
to carry out verification by proof. We encoded the state of the
appliances by Strings, which are not supported by the tool
used. The level of abstraction should be determined with
respect to the planned validation phases and the known the
limits of the different tools.

A similar remark can be made for the expression of the
JML assertions. First, one should choose an adequate sub-set
of JIML. If IML is a quite rich language for expressing asser-
tions, it is not yet completely supported by all the tools. Tools
such as ESC/Java 2 or KeY support only a part of the JML
constructions. Similarly, testing tools such as Tobias rely on
the fact that the assertions have to be executable. And some
JML constructions are not executable by default (for instance,
a\forallisnotexecutableif the following expression does
not concern a JML set or an integer interval).

Perspectives

There are two main directions in which we want to work. In
our context, local, global and environmental properties were
often associated with a risk to be prevented. For instance,
the kettle usage is restricted in order to prevent the risk of
scalding. Of course, one of the difficulty is to express “all”
the requirements. Another one is to be able to translate them
at the system level, since the risks depend on the configura-
tion of the home and the appliances. For the kettle, scalding
can be prevented only if it is possible to close the lid thanks
to the system; and it is not the case for most of the kettles.
Gas-poisoning is a risk that can be prevented only if the
system is able to command the gas-valves or if it is able to
renew the air. We are currently working to associate the pre-
sented approach with a methodology in order to collect and
to translate properties into relevant assertions (with respect
to the home configuration).

The second main direction of our work is to provide a
framework to ease the extension of the existing system.
Indeed, the translation of the real implementation into an
abstract implementation is not yet automated and, thus, is
error-prone. So, to add new appliances and services, we pro-
pose to express them directly at the abstract level, and to vali-
date them. Then, it would be possible to transform the classes
of the abstract implementation into skeletons of classes for
the real implementation, which have to be completed before
their final use. To reduce the probability of errors introduced
at that step, the skeletons should be as complete as possible.

Acknowledgments This research was partially supported by the
Japanese Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Young Scientists (B) (No. 18700062), Scientific
Research (B) (No. 17300007), and Comprehensive Development of
e-Society Foundation Software program. It is also supported by JSPS
and MAE under the Japan-France Integrated Action Program (PHC-
SAKURA) 2007-08.

Increase confidence in one home network system implementation

195

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Ahrendt W, Baar T, Beckert B, Bubel R, Giese M, Hihnle R,
Menzel W, Mostowski W, Roth A, Schlager S, Schmitt PH
(2005) The KeY Tool. Softw Syst Model 4:32-54

Balfe S, Li S, Zhou J (2006) Pervasive trusted computing. In: 2nd
international workshop on security, privacy and trust in pervasive
and ubiquitous computing (SecPerU), pp 88-94. IEEE Computer
Society, Lyon

Bartetzko D, Fischer C, Moller M, Wehrheim H (2001) Jass-Java
with Assertions. Electr Notes Theor Comput Sci 55(2)

Beckert B, Héhnle R, Schmitt PH (eds) (2007) Verification of
object-oriented software: the KeY approach. LNCS 4334. Springer
Bohn J, Coroama V, Langheinrich M, Mattern F, Rohs M (2005)
Social, economic, and ethical implications of ambient intelligence
and ubiquitous computing. In: Weber W, Rabaey J, Aarts E (eds)
Ambient intelligence. Springer, Berlin, pp 5-29

Bousquet L, Ledru Y, Maury O, Oriat C, Lanet JL (2004) A case
study in JML-based software validation (short paper). In: Proceed-
ings of 19th Int. IEEE Conf. on Automated Sofware Engineering
(ASE’04), pp 294-297

Burdy L, Cheon Y, Cok DR, Ernst MD, Kiniry JR, Leavens GT,
Leino KRM, Poll E (2005) An overview of JML tools and appli-
cations. STTT 7(3):212-232

Busi N, Gorrieri R, Guidi C, Lucchi R, Zavattaro G. (2005) Towards
a formal framework for choreography. In: Enabling technologies:
infrastructure for collaborative enterprise. 14th IEEE international
workshops on 1315 June 2005, pp 107-112

Candolin C (2007) A security framework for service oriented
architectures. In: Military communications conference, 2007.
MILCOM. IEEE, pp 1-6, 29-31 Oct 2007

Canfora G, Di Penta M (2006) Testing services and service-centric
systems: challenges and opportunities. IT Prof 8(2):10-17

Cheon Y, Leavens G (2002) A simple and practical approach to
unit testing: the JML and JUnit way. In: ECOOP 2002. LNCS,
vol 2474. Springer, pp 231-255

Cohen D, Dalal S, Parelius J, Patton G (1996) The combinato-
rial design approach to automatic test generation. IEEE Softw
13(5):83-88

Controneo D, Di Flora C, Russo S (2003) Improving dependability
of service oriented architectures for pervasive computing. Object-
oriented real-time dependable systems, 2003. (WORDS 2003). In:
Proceedings of the eighth international workshop on 15-17 Jan
2003, pp 74-81

Dai G, Bai X, Wang F, Dai F (2007) Contract-based testing for web
services. In: 31st annual international computer software and appli-
cations conference (COMPSAC). IEEE Computer Society, Beijing,
China, pp 517-526

Dragoni N, Massacci F, Naliuka K, Siahaan I (2007) Security-
by-contract: toward a semantics for digital signatures on mobile
code. In: 4th European public key infrastructure workshop: the-
ory and practice (EuroPKI). LNCS, vol 4582. Springer, Palma de
Mallorca, Spain, pp 297-312

du Bousquet L (1999) Feature interaction detection using testing
and model-checking, experience report. In: World congress on for-
mal methods. LNCS, vol 1708, Springer, Toulouse, pp 622-641
Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JB, StataR
(2002) Extended static checking for Java. In: Proc. of the ACM
SIGPLAN 2002 conference on programming language design and
implementation. ACM Press, pp 234-245

Foster H, Uchitel S, Magee J, Kramer J (2003) Model-based verifi-
cation of Web service compositions. In: Automated software engi-
neering, 2003. Proceedings. 18th IEEE international conference on
6-10 Oct 2003, pp 152-161

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

. Geer D (2006) Nanotechnology: the growing impact of shrinking

computers. Pervasive Comput 5(1):7-11

Jackson M (1999) The role of formalism in method. In: Formal
methods, world congress on formal methods in the development of
computing systems (FM99). LNCS, vol 1708. Springer, Toulouse,
p 56

The JML Home Page (2005). http://www.jmlspecs.org
Karaorman M, Abercrombie P (2005) Contractor: introducing
design-by-contract to java using reflective bytecode instrumenta-
tion. Form Methods Syst Des 27(3):275-312

Karaorman M, Holzle U, Bruno J (1999) Contractor: a reflective
java library to support design by contract. Tech. rep., Santa Barbara
Kolberg M, Magill E, Wilson M (2003) Compatibility issues
between services supporting networked appliances. IEEE Com-
mun Mag 41:136-147

Lamparter S, Luckner S, Mutschler S (2007) Formal specification
of web service contracts for automated contracting and monitor-
ing. In: 40th Hawaii international conference on systems science
(HICSS). IEEE Computer Society, Big Island, p 63

Langheinrich M, Coroama V, Bohn J, Mattern F (2005) Living ina
smart environment—implications for the coming ubiquitous infor-
mation society. Telecommun Rev 15(1):132—-143

Leavens G, Baker A, Ruby C (1999) JML: a notation for detailed
design. In: Kilov H, Rumpe B, Simmonds I (eds) Behavioral
specifications of businesses and systems. Kluwer, Dordrecht,
pp 175-188

Ledru Y, du Bousquet L, Maury O, Bontron P (2004) Filtering
TOBIAS combinatorial test suites. In: Fundamental approaches to
software engineering (FASE’04). LNCS, vol (to appear). Springer,
Barcelona

Loke SW (2003) Service-oriented device ecology workflows.
In: First international conference on service-oriented computing
(ICSOC 2003). LNCS, vol 2910. Springer, Trento, pp 559-574
Matsushita Electric Industrial Co., L Kurashi Net (jp). http:/
national.jp/appliance/product/kurashi-net/

Meyer B Object-oriented software construction, 2nd edn

Meyer B (1992) Applying design by contract. Computer 25(10):
40-51

Nakajima S (2002) Model-checking verification for reliable web
services. In: Workshop on Object-Oriented Web Services, collo-
cated with OOPSLA

Nakamura M, Tanaka A, Igaki H, Tamada H, Matsumoto K (2006)
Adapting legacy home appliances to home network systems using
web services. In: Int. Conf. on Web Services (ICWS 2006). IEEE,
pp 849-858

Nakamura M, Tanaka A, Igaki H, Tamada H, Matsumoto K (2008)
Constructing home network systems and integrated services using
legacy home appliances and web services. Int] Web Serv Res, to
appear

Papazoglou MP, Georgakopoulos D (2003) Special issue: service-
oriented computing. Introduction. Commun ACM 46(10): 24-28
Pfadenhauer K, Dustdar S, Kittl B (2005) Challenges and
solutions for model-driven Web service composition. Enabling
technologies: infrastructure for collaborative enterprise, 2005.
In: 14th IEEE international workshops on 13-15 June 2005,
pp 126-131

Plath M, Ryan MD (2000) The feature construct for SMV: seman-
tics. In: Feature interactions in telecommunications and software
systems VI. Glasgow, pp 129-144

Rushby JM (1999) Mechanized formal methods: where next?
In: Formal methods, world congress on formal methods in the
development of computing systems (FM99). LNCS, vol 1708.
Springer, Toulouse, pp 48-51

@ Springer

http://www.jmlspecs.org
http://national.jp/appliance/product/kurashi-net/
http://national.jp/appliance/product/kurashi-net/

196

L. du Bousquet et al.

40. TOSHIBA: Toshiba home network: feminity. http://www3.toshiba.
co.jp/feminity/feminity_eng/

41. Weiser M (1993) Some computer science issues in ubiquitous com-
puting. Commun ACM 36(7):74-84

42. Yan B, Nakamura M, du Bousquet L, ichi Matsumoto K (2007)
Characterizing safety of integrated services in home network

@ Springer

43.

system. In: Sth international conference on smart homes and health
telematics (ICOST), LNCS, vol. 4541. Springer, Nara, pp 130-140
Yi X, Kochut K (2004) A CP-nets-based design and verification
framework for Web services composition. IEEE int. conf. on web
services, 6-9 July 2004, pp 756-760

http://www3.toshiba.co.jp/feminity/feminity_eng/
http://www3.toshiba.co.jp/feminity/feminity_eng/

	Using formal methods to increase confidencein a home network system implementation: a case study
	Abstract
	1 Introduction
	2 Motivations and chosen approach
	3 The home network system application
	3.1 Introduction to home network system (HNS)
	3.2 A framework for implementing HNS integrated services
	3.3 The real implementation

	4 Providing an abstract implementation
	4.1 Abstraction of the environment
	4.2 Abstraction of the appliances
	4.3 Abstraction of the integrated services
	4.4 New appliances and services

	5 Specifying the HNS integrated services
	5.1 Requirements at different levels
	5.2 Brief description of JML
	5.3 Using JML to express the expected properties

	6 Validation by test
	6.1 JML as a test oracle
	6.2 Principles of the test case generation
	6.3 Validation of the abstract implementation

	7 Verification by extended static checking or proof
	7.1 Tools for verification
	7.2 Using ESC/Java 2
	7.3 Using KeY
	7.4 Analysis of the verification process

	8 On-line monitoring
	9 Related work
	10 Summary, lessons learnt and perspectives
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

