
Considering Safety and Feature Interactions for
Integrated Services of Home Network System

Ben Yan

Graduate School of Information Science, Nara Institute of Science and Technology
hon-e@is.naist.jp

Abstract. Assuring safety in the home network system (HNS) is a crucial issue
to guarantee high quality of life. In this position paper, we first review our pre-
vious work, formulating three kinds of safety for the HNS integrated services:
local safety, global safety, andenvironment safety. We then present a method that
validates safety for integrated service. Finally, we discuss a perspective in how
the safety can be assured when considering the feature interaction problem.

1 Formalizing Safety in Home Network System

Thehome network system(HNS, for short) is comprised of networked home appliances
and sensors, which is one of the most promising applications of the emerging ubiquitous
computing technologies. The HNS enables flexible integration (or orchestration) of dif-
ferent home appliances and sensors through the network, which achieves value-added
integrated services[5].

In developing and providing the HNS integrated services, the service provider must
guarantee that the service issafefor inhabitants, house properties and their surrounding
environment. That is, a service is free from any condition that can cause [injury or
death to home users and neighbors], or [damage to or loss of home equipments and the
surrounding environment].

Since the service is typically implemented as a software application, appliances are
often operated automatically by the application, but not by the human user. Also, one in-
tegrated service operates multiple appliances, which yields global dependencies among
different appliances. Moreover, since multiple integrated services can be executed, un-
expected functional conflicts may occur among the services. Thus, a single fault in the
service application can cause serious accidents to the user.

In general, the safety is characterized by somepropertiesto be satisfied by a user (or
a system). In our previous work [6], we have formulated three kinds of safety properties
in the context of HNS integrated services.

Local Safety Property A safety propertylp is called alocal safety propertyiff lp
is defined within a single applianced in the HNS. Typically,lp is derived as a safety
instruction for usingd. Let LocalProp(d) = {lp1, lp2, ..., lpm} be a set of all local
safety properties with respect to the applianced. For a given integrated services, let
App(s) = {d1, d2, ..., dn} be a set of networked appliances used bys. Then, we define
LocalProp(s) = ∪di∈App(s)LocalProp(di) which is a set of local safety properties
with respect the services. The following property is an example of the local safety
property of an electric kettle:



[L1] Do not open the lid when the electric kettle is in the boiling mode.

Global Safety Property A safety propertygp is called aglobal safety propertyiff
gp is defined over multiple appliancesd1, d2, ..., dn. Typically, gp is a safety instruc-
tion of an integrated services that usesd1, d2, ..., dn. We denoteGlobalProp(s) =
{gp1, gp2, ..., gpk} to represent a set of all global safety properties for the services.
The following is an example of the global safety property for any integrated service
that uses a gas valve and kitchen equipments.

[G1] While the gas valve is opened, the ventilator must be turned on.

Environment Safety Property A safety propertyep is called anenvironment safety
property iff ep is defined as the environmental or residential constraints, which exist
independently of any appliances or services.EnvProp = {ep1, ep2, ..., epl} denote a
set of all environment properties given. The following environment property might be
derived from the safety guideline of the house:

[E1] The total current used simultaneously must not exceed 30A.

Safety of HNS Integrated ServicesLet P be a set of safety properties. For a service
s, we writes ` P iff s satisfies all properties contained inP . Then, we define the safety
of s as follows.

– s is locally safeiff s ` LocalProp(s).
– s is globally safeiff s ` GlobalProp(s).
– s is environmentally safeiff s ` EnvProp.
– s is safeiff s is locally, globally and environmentally safe.

Thus, thesafety validation problemis defined as follows:
Input: An integrated services, LocalProp(s), GlobalProp(s), EnvProp.
Output: s is safe or not.

2 Safety Validation by Design by Contract

Since any safety flaws in an integrated services can lead to serious accidents, we con-
sider it crucial to remove the flawsbefores is actually deployed in the HNS. In [6],
we have proposed a framework of safety validation using object-oriented modeling and
design by contract (DbC)[4], which is applied totesting phaseof s. The framework
first introduces an object-oriented modeling technique of HNS to clarify the relation-
ships among the HNS components (i.e., appliances, services and the home) [5]. Fig. 1
shows the overview of the proposed model. The model mainly consists of three kinds of
objects (classes):Appliance , Service , andHome. These classes forms the follow-
ing relationships to match well the intuition of the HNS and integrated services: [R1: a
Homehas multipleAppliance s], [R2: aHomehas multipleService s], and [R3: a
Service uses multipleAppliance s].



+setBrightnessLevel()
+getLightStatus()

-brightnessLevel

Light

+on()
+off()
+getApplianceSpecification()
+getCurrentConsumption()
+getPowerStatus()

-applianceName
-applianceSpecification
-applianceCurrentElectricStatus
-powerStatus

Appliance

+startService()
+cancelService()
+pauseService()
+resetService()

-serviceNum
-workingState

Service

+getCurrentStatus()
+getEnvironmentRequirement()

-environmentRequirment
-currentEnvironment

Home

+getAppliancePowerSupplyRequirement()
+getApplianceEnviromentyRequirement()

-appliancePowerSupplyRequirement
-applianceEnvironmentRequirement

Specification

<<USES>>

+callService()
+getTheateSerStatus()

-dvdSoundLevel
-soundMusicMode
-tvChannel
-:

DVDTheaterService

+callService()
+getRelaxSerStatus()

-dvdInputSource
-soundMusicMode
-kettleMode
-:

RelaxService

+callService()
+getCookSerStatus()

-windLevel
-LightBrightnessLevel
-:

CookingPreparationService

+callService()
+getShowerSerStatus()

-beginTime
-waterTemperature
-:

ShowerService

+setWaterTempreature()
+setStartTime()
+setEndTime()
+getHotWaterSystemStatus()

-waterTemperature
-startTime
-endTime

HotWaterSystem

+setOnTime()
+setOffTime()
+setWindLevel()
+setTemperature()
+setWorkingMode()
+getBathAirConStatus()

-onTime
-offTime
-windLevel
-temperature
-mode

BathAirConditioner

+selectChannel()
+selectVolumeLevel()
+setSoundInputMode()
+setSoundOutputMode()
+setVisualInputMode()
+setVisualOutputMode()
+playTv()
+stopTv()
+PauseTv()
+upChannel()
+downChannel()
+upVolume()
+downVolume()
+getTvStatus()

-channel
-volumeLevel
-soundInputMode
-soundOutputMode
-visualInputMode
-visualOutputMode
-workingStatus

DigitalTV

+setOnTime()
+setOffTime()
+setWindLevel()
+getVentilatorStatus()

-windLevel
-onTime
-offTime

Ventilator

+setInputSource()
+setSoundOutputMode()
+setVisualOutoutMode()
+setVolumeLevel()
+playDvd()
+stopDvd()
+pauseDvd()
+fastForward()
+fastRewind()
+upVolume()
+downVolume()
+getDvdStatus()

-volumeLevel
-workingStatus
-inputSource
-palySpeed
-soundOutputMode
-visualOutputMode

DVDPlayer

+setMusicMode()
+setVolumeLevel()
+setInputSource()
+playMusic()
+stopMusic()
+pasueMusic()
+upVolume()
+downVolume()
+getSoundSystemStatus()

-musicMode
-volumeLevel
-soundInputSource
-workingStatus

SoundSystem

+setWorkingMode()
+setTemperature()
+openLid()
+closeLid()
+getKettleStatus()

-temperature
-lidStatus
-heatingMode

ElectricKettle

+openGas()
+closeGas()
+getGasStatus()

-workingStatus

GasValve +setOnTime()
+setOffTime()
+setWindLevel()
+setTemperature()
+setWorkingMode()
+getAirConStatus()

-onTime
-offTime
-windLevel
-temperature
-mode

AirConditioner

+setSpeed()
+closeCurtain()
+openCurtain()
+getCurtainStatus()

-speedLevel

Curtain

 Java Source Code with JML Annotation

Java Instrumented Byte Code

JML CompilerTest Case Generation

Test Suites

HomeServices Appliances

HomeServices Appliances
! ! !

Test Driver (J-Unit)

Verdicts Environment
Safety

Global
Safety

Local
Safety

Java Source Code with JML Annotation

Java Instrumented Byte Code

JML CompilerTest Case Generation

Test Suites

HomeServices Appliances

HomeServices Appliances
! ! !

Test Driver (J-Unit)

Verdicts Environment
Safety

Global
Safety

Local
Safety

Fig. 1.Object-oriented model of HNS Fig. 2.Safety validation with JML

Assuming that the HNS is implemented according to the model, we then embed the
given safety properties into the source code of appropriate objects. For this, we encode
each safety property as acontractof DbC (i.e., a pre-condition, a post-condition, or a
class invariant). More specifically,LocalProp(s), GlobalProp(s) andEnvProp are
encoded as certain DbC contracts, and are respectively embedded intoAppliance ,
Service andHomeobjects. The source code with the DbC contracts are compiled
into instrumented target codewhich involves check routines of the contracts. Then,
we conduct testing of the instrumented code. While running the testing, if any DbC
contract is broken, an exception is thrown and thus the security flaw can be detected.
Fig. 2 shows an overview of the safety validation, where the source codes are written in
the Java language and the JML (Java Modeling Language) [1, 3] is used for writing the
DbC contracts.

3 Feature Interactions and Safety in HNS

The safety validation framework presented above is basically for each individual in-
tegrated service, and is executed before the service is deployed in the HNS. However,
even if every service is proven to be safe, combined use of multiple services may violate
some safety properties, due tofeature interactions(FIs) among the services. The safety
violation by the FIs can be formulated as follows:
For a given pair of integrated servicess1 ands2,
FI-(L)(Local Safety Violation):
[s1 ` LocalProp(s1)]∧ [s2 ` LocalProp(s2)]⇒ [s1+s2 6 `LocalProp(s1)∪LocalProp(s2)].
FI-(G)(Global Safety Violation):
[s1 ` GlobalProp(s1)]∧ [s2 ` GlobalProp(s2)]⇒ [s1+s2 6 `GlobalProp(s1)∪GlobalProp(s2)].
FI-(E)(Environment Safety Violation):
[s1 ` EnvProp] ∧ [s2 ` EnvProp] ⇒ [s1 + s2 6 `EnvProp].
where the operator+ denotes a composition operator of two services1. The above

1 The detailed semantics of the composition are not given here.



definitions the safety violation appear to be quite similar to the definition of the conven-
tional feature interactions in telephony. However, there are some domain-specific issues.
Taking them into account, we are currently developing a method for safety validation
with FIs.

– The three types of the safety violation could be dealt with different methods.
– The safety properties in HNS must be assured at all costs. There is nodesirable

interactionswith respect to the safety violation.
– The formalization of FIs in HNS, presented by Nakamura et al. [5], would contain

some cases of the safety violations. However, not all interactions cause a safety
violation.

– Our safety validation framework [6] can be used only if boths1 ands2 are pro-
vided by the same service provider. Otherwise, an alternative online approach is
necessary.

– The online approach would be implemented on the central home server, which
manages all appliances and environment properties.

– The sophisticated execution control of multiple services (e.g., resource locking [2])
would be promising to prevent FIs that leads to the safety violation. The execution
control restricts the semantics of the service composition (i.e., the operator +).

Acknowledgment: This research was partially supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Young Scientists (B) (No. 18700062) and
Scientific Research (B) (No. 17300007), and by JSPS and MAE under the Japan-France
Integrated Action Program (SAKURA).

The author thanks to Prof. Masahide Nakamura at Kobe University, Prof. Lydie du
Bousquet at Joseph Fourier University, and Prof. Ken-ichi Matsumoto at Nara Institute
of Science and Technology, for the supervision of my research.

References

1. L. du Bousquet, Y. Ledru, O. Maury, and P. Bontron, “A case study in JML-based software
validation,” Proc. of 19th Int. IEEE Conf. on Automated Software Engineering (ASE’04),
Linz, pages 294-297, IEEE Computer Society Press, Sep. 2004.

2. M. Kolberg, E. H. Magill, and M. Wilson, “Compatibility issues between services supporting
networked appliances”,IEEE Communications Magazine, vol. 41, no. 11, pp.136-147, Nov.
2003.

3. G. T. Leavens and Y. Cheon, “Design by Contract with JML,” Java Modeling Language
Project,Internet: http://www.jmlspecs.org, 2003.

4. B. Meyer, “Applying Design by Contract,”IEEE Computer, vol.25, no.10, pp.40-51,
Oct.1992.

5. M. Nakamura, H. Igaki,and K. Matsumoto, “Feature Interactions in Integrated Services of
Networked Home Appliances -An Object-Oriented Approach-,”Proc. of Int’l. Conf. on
Feature Interactions in Telecommunication Networks and Distributed Systems (ICFI’05),
pp.236-251, Jul. 2005.

6. B. Yan, M. Nakamura, L. du Bousquet,and K. Matsumoto, “Characterizing Safety of Inte-
grated Services in Home Network System,”Proc. of 5th Int’l. Conf. on Smart homes and
health Telematics (ICOST2007), pp.130-140, Jun. 2007.


