
International Journal of Smart Home

Vol. 3, No. 1, January, 2009

67

Deriving Safety Properties for Home Network System

Based on Goal-Oriented Hazard Analysis Model

Ben Yan1, Masahide Nakamura2 and Ken-ichi Matsumoto1

1Graduate School of Information Science, Nara Institute of Science and Technology,

NAIST8916-5 Takayama, Ikoma, Nara 630-0101, Japan

Email: hon-e, matumoto@is.naist.jp
2Graduate School of Engineering, Kobe University

1-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-0013, Japan

masa-n@cs.kobe-u.ac.jp

Abstract

 The home network system (HNS, for short) is comprised of networked home appliances,

which achieves various value-added services for home users. Assuring safety of the HNS and

the services is a crucial issue. However, safety properties to be verified against the HNS have

been given in an ad-hoc manner. This paper presents a systematic method that can derive the

verifiable safety properties from a given HNS model and hazard contexts. Specifically, we

first define a hazard analysis model for the HNS consisting of four levels of abstractions. We

then conduct a goal-oriented analysis to specify logical relations between the adjacent

abstraction levels. The analysis yields cause-and-effect chains from the abstract hazard

contexts to the concrete attributes and operations of HNS objects (appliances, services,

environment). Finally, the safety properties and their responsible operations are derived from

the complete model, which give the strong rationale of the safety of the HNS.

1. Introduction

 The emerging ubiquitous technologies allow general house-hold appliances to be

networked. The home network system (HNS, for short) consists of such networked appliances,

intended to provide various value-added services to home users. Owing to the network

capability, the appliances, such as TVs, DVDs, air-conditioners, lights, curtains, ventilators,

kettles, gas valves, baths, hot-water systems, are monitored, controlled, and even orchestrated

from anywhere in the house even from outside [12].

In general, each service for the HNS is implemented as a software application (i.e., program),

which automatically controls multiple appliances through the network. For instance, let us

consider a service, say Cooking Preparation Service. This service automatically sets up the

kitchen and related appliances for preparing for cooking, within just a single user’s operation.

When requested, the kitchen light is turned on, the gas-valve is opened, the ventilator is

turned on, the oven becomes pre-heating mode, and the kettle is turned on in a boiling mode.

In developing and providing such HNS services, the service provider must guarantee safety of

the services. In the conventional (non-networked) home appliances, the safety has been

assured manually by the human user, by means of safety instructions [2] described in the

user’s manual. However, in the HNS the safety must be assured in the software applications.

Despite its importance, the safety issues within the HNS have not been studied well. In

general, the safety issues of hazard system are usually considered at (A) system designing

stage or (B) system implementing stage. Stage (A) always proposes a method for supporting

mailto:masa-n@cs.kobe-u.ac.jp

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

68

how to design a safe specification for a system. Stage (B) always proposes a method for

watching and preventing the system into the hazard state or considering what measures

should be took for decreasing the damage after the accident happened. For this paper, we

consider the safety issues on the stage (A) and want to propose a systemic method for helping

the designers design a safe HNS specification. In our previous work [17] [16], we have

proposed a method that validates the safety properties against given HNS implementations,

based on the concept of design by contract [3] [4] [11]. The safety of the HNS was

characterized as three types of properties: (1) local safety properties are safety instructions of

each individual appliance, (2) global safety properties are specified over multiple appliances

to operate the HNS service safely, and (3) environment safety properties are residential rules

in home and surrounding environments, independent of appliances and services. Table 1

shows examples

of the safety properties related to CookingPreparationService.

Table 1. Examples of safety properties for HNS

 However, the previous method assumes that all the safety properties are given by the

analyst beforehand. Therefore, we had to specify the safety properties (including the ones in

Table 1) manually in an ad-hoc manner. Some critical safety properties might be overlooked,

which results in serious accidents in the HNS. To cope with this problem, this paper presents

a requirement-engineering approach that can systematically derive the verifiable safety

properties. Specifically, we first propose a hazard analysis model for the HNS, consisting of

four levels of abstractions: (1) hazard context, (2) hazardous state, (3) object attribute and (4)

object method. For a given HNS model and the hazard context, we then conduct a goal-

oriented analysis to specify logical relations between the adjacent abstraction levels. The

analysis yields cause-and-effect chains from the abstract hazard contexts to the concrete

attributes and operations of HNS objects (appliances, services, and environment). Finally, the

safety properties and their responsible operations are derived from the complete model, which

give the strong rationale of the safety of the HNS.

2. Preliminaries

2.1. Home Network System (HNS)

 A HNS consists of one or more networked appliances connected to a LAN at home. In

general, each appliance has a set of application program interfaces (APIs), by which the users

or external software agents can control the appliance via the network. A HNS typically has a

home server, which manages all the appliances in the HNS. Services and applications are

installed on the home server. A HNS service provides a sophisticated and value-added service

by using multiple appliances together. The HNS service is implemented as a software

application that invokes the APIs of the appliances. The appliances and services are deployed

in a home, which is characterized by environmental attributes (e.g., temperature, humidity,

brightness, current, sound, space).

2.2. Object-Oriented Model for HNS

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

69

 Every component in HNS (i.e., appliance, service, or home) can be regarded as an object

consisting of attributes and methods. Therefore, we have previously proposed an object-

oriented model for the HNS [5] [13], which can be represented by a UML class diagram in

Figure 1. The model consists of three kinds of objects (classes): Appliance, Service, and

Home. These classes have relationships such that (a) a Home has multiple Appliances, (b) a

Home has multiple Services, and (c) a Service uses multiple Appliances. These relationships

reasonably characterize the structure of the HNS. For every object in the model, the attributes

characterize the (internal) state of the object, while the methods represent operations (i.e.,

APIs) of the object. Executing a method may refer or update the values of some attributes.

For instance, for an object ElectricKettle, the method on() updates the value of the attribute

power to ON. Similarly openLid()updates the value of lid to OPEN.

2.3. Describing HNS Specification

 To capture the given HNS model more clearly, we here introduce a language for describing

the specification of the HNS. The language is originally defined in our previous research [5]

[13], so full definition can be referred to the papers. Since the language aims to specify the

appliance and the service models at the design (or requirements) level, no implementation

specific information is contained.

Figure 1. Object-oriented model of HNS

 2.3.1. Appliance. As mentioned in Section 2.2, every appliance is characterized as an object

consisting of attributes and methods. Figure 2 represents a specification of an electric kettle.

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

70

This specification says that the object ElectricKettle has four attributes and six methods. Each

attribute is defined by associated type and initial value. In our language, integer (with

allowable values), boolean, or enumerated type can be used. For instance, power can take two

values ON or OFF, which is initialized to OFF. The attribute temperature holds a temperature

setting value, to which the kettle warms up the water. Each method in the specification is

simply characterized by a pair of logical formula over the attributes, namely, precondition

and post-condition. The pre-condition of a method is a guard condition that must be satisfied

before the method is executed. On the other hand, the post-condition is a resultant condition

that must be satisfied after the method is executed. In our model, ordinary comparison and

logical operators (==, !=, >, >=, <, <=, &&, ||, !) 1 are used. For instance, let us take

openLid() method in Figure 2. To execute openLid(), the lid must be closed and the power

must be on. After executing the method, the lid will be opened. The method setMode() takes a

formal parameter md, intended that the working mode will be updated to the given md in the

post-condition. Our specification language also can specify invariants. The invariant is a

condition that must be satisfied all the time no matter which method is executed. In Figure 2,

no specific invariant is given.

 2.3.2. Service. The specification for HNS service can be specified in the almost same way.

In addition to the case of the appliance, a service has a set of appliances used by the service.

Figure 3 shows a specification of CookingPrepara tionService, which was introduced in

Section 1. The specification says that this service uses five appliances — a ventilator, a gas

system, a light, an oven, and an electric kettle. The attribute attr of each appliance app is

denoted by app.attr. As specified in the post condition of activation(), when the service is

activated, the light is turned on, gas valve is opened, ventilator is turned on, the oven becomes

the pre-heating mode, and kettle is turned to the boiling mode.

2.4. Safety Property and Validation

 An appliance (or a service) in the HNS is called safe, iff the appliance (or the service, respectively)

is free from any condition that can cause (a) injury or death to home users and neighbors, or (b)

damage to or loss of home equipments and the surrounding environment.

1. The operator notation follows those of the C (or Java) language

Figure 2. Specification of ElectricKettle

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

71

Figure 3. Specification of CookingPreparetionService

However, it is generally quite difficult to achieve 100% safety in any system. Hence, the

safety is often evaluated by means of risk. To assure the safety to a considerable extent, a set

of conditions or guidelines minimizing the risk are considered [2]. These conditions are so-

called safety properties. In the context of the HNS, the safety properties are specified over the

three kinds of HNS objects in the object-oriented model, considering potential hazards caused

by the objects. The safety properties are often written in the natural language, as shown in

Table 1. In our previous work [17] [16], we have defined the notion of local, global, and

environment safety properties for the HNS. Specifically, Local Safety Property: A safety

property lp is called a local safety property iff lp is defined within a single appliance d in the

HNS. Typically, lp is derived as a safety instruction for using d.

 Global Safety Property: A safety property gp is called a global safety property iff gp is

defined over multiple appliances d1, d2, ..., dn. Typically, gp is defined as a functional (or

non-functional) requirement of a HNS service that uses d1, ..., dn,simultaneously.

 Environment Safety Property: A safety property ep is called an environment safety

property iff ep is defined as the environmental or residential constraints, which exist

independently of any appliances or services. The safety validation is to verify if the target

system satisfies the given safety properties. The safety validation would be implemented by

some V&V techniques, such as testing [16], model checking [5], theorem proving, etc. No

matter which approach is taken, the correctness and completeness of the safety properties are

a key factor for the successful safety validation. In our previous work, we assumed that all the

safety properties are manually given by the analyst. Thus, how to give correct and complete

properties is still an open issue, although it is quite a challenging problem.

3. Research Goal and Approach

 The main problem in this paper is considering how to derive safety properties (such as the

ones in Table 1) for given HNS specifications (in Figures 2 and 3), systematically. Moreover,

the derived safety properties should be reflected in the (original) specifications, so that the

safety properties are explicitly considered at the design level. Among the local, the global and

the environment safety properties, we do not consider the environment property in this paper.

By definition, every environment property heavily depends on the environmental factors,

which cannot be captured

by the HNS model and specification. After all, the problem is formulated as follows:

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

72

Input:

- (I) ASpec: a set of appliance specifications, and

- (II) SSpec: a set of service specifications.

Output:

- (a) LProp: a set of local safety properties,

- (b) Safe-ASpec: a set of (safe) appliance specifications, where Safe-ASpec is a revision of

ASpec with considering LProp

- (c) GProp: a set of global safety properties,

- (d) Safe-SSpec: a set of (safe) service specifications, where Safe-SSpec is a revision of SSpec

with considering GProp.

To achieve the goal, we conduct a hazard analysis, which investigates potentially dangerous

situations under the given HNS. To perform the analysis efficiently, we propose a HNS

hazard analysis model (HNS-HAM, for short). Using the HNS-HAM, we then derive the

safety properties in a goal-oriented way.

4. Proposed Method

4.1. HNS Hazard Analysis Model

 We propose a unique hazard analysis model, called HNS-HAM, consisting of four levels of

abstractions. Figure 4 depicts the overview of the proposed model. The model starts with

abstract types of hazards (we call hazard contexts), which are independent of specific HNS

configuration. The hazard contexts (Level 1) are refined to hazardous states (Level 2), and

then mapped to concrete attributes (Level 3) and methods (Level 4) of the HNS objects. The

adjacent levels are linked by logic relations. The HNS-HAM specifies cause-and-effect

chains [9] from the abstract hazard contexts to the concrete attributes

and operations of the HNS model. We explain the details of each level as follows. (A) Level1:

Hazard Context Level. The top level of the HNS-HAM defines abstract types of hazards to be

considered in the hazard analysis, which we call hazard contexts. Each hazard context must

be independent of the specific HNS instances. Typical hazard contexts for the HNS include

burn, scald, explosion, gas poisoning, flood, deficiency of oxygen, noise, etc. The purpose of

Level 1 is to determine the scope of the hazard analysis. (B) Level2: Hazardous State Level.

For each hazard context hc defined in Level 1, this level defines possible states in the given

HNS, where the hazard hc is realized. We call such dangerous states hazardous states. In

general, a hazard occurs due to several related factors. Also a hazardous state can be

composed of fine-grained sub-states. So we characterize a hazard context hc by several

hazardous states hs1, hs2, ..., hsn connected by logical operaters (AND, OR, NOT). Moreover,

a hazardous state hsi can be decomposed into several sub-states hsi1, ..., hsik. For a hazardous

state hs, if there is no more sub-state into which hs is refined, we call hs an atomic hazardous

state.

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

73

Figure 4. Structure of HNS-HAM

 Figure 5 shows an example of HNS-HAM investigating the hazard context “scald” within

ElectricKettle (let it be HC1). In the figure, a rectangle node represents a hazard context, an

oval node represents a hazardous states (other nodes will be explained later). Each arrow from

node A to B denotes a causal relationship that “B is caused by A”. In this example, the

possible cause of the scald is characterized by the AND composition of two states, “(HS1):

the water temperature is too high”, AND “(HS2): the lid is opened”. In this example, HS1 is

further decomposed into two sub-states: “(HS11): the kettle is in the boiling mode”, OR

“(HS12): the temperature setting is above 60”. HS11, HS12 and HS2 are atomic hazardous

states. The purpose of Level 2 is to map the general hazard context into concrete causes in the

HNS currently focused on. In this level, we can see a condition under which the hazard

context is realized (in the natural language).

 (C) Level3: Object Attribute Level. This level encodes every atomic hazardous state defined in Level

2, in a formal condition over attributes of a HNS object. Since each hazardous state is somehow

conceptual representation, this level transforms the state into rigorous expression in the HNS

specification. In Figure 5, a round-box node represents a condition over attributes of

ElectricKettle. For instance, the atomic hazardous state HS11 is encoded by an expression

mode==BOILING. In this level, the hazard context can be captured in terms of as concrete attribute

values of the HNS objects.

 (D) Level4: Object Method Level. Finally, this level identifies object methods that can trigger the

hazard context. More specifically, for each attribute condition cond in Level 3, we find methods m1,

m2, ..., mr that can make cond true. These methods can be easily identified by investigating post-

condition of the methods defined in given HNS specifications. The purpose of this level is to clarify

operations that must be anticipated for the safety assurance. In Figure 5, a node with brackets

represents a method of ElectricKettle that makes a certain attribute condition true. For instance,

we can see that executing setMode(BOILING) causes a condition mode==BOILING, as specified in

the specification in Figure 2, and that the execution would be one factor causing scald.

4.2. Constructing HNS-HAM

 The HNS-HAM is constructed by the following procedure. Note in the following that a HNS-HAM is

constructed for every pair of a hazard context hc and a given specification spec.

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

74

Figure 5. HNS-HAM for ElectricKettle

 Step 1 (Definition of Hazard Contexts): Enumerate any hazard contexts that might occur

in the given HNS. Since this step requires no technical aspect of the HNS specifications, any

stakeholders can join the analysis.

 Step 2 (Elaboration of Hazard States): Pick up a specification spec from ASpec (or

SSpec). For each hazard context hc, characterize hc by some hazardous states within the

object of spec. Then, decompose each hazardous state into sub-states in a goal-oriented

fashion until all atomic states are obtained, which completes Level 2. Step 2 is the most

important step that determines the quality of the HNS-HAM. Participation of experts in safety

engineering would be encouraged to improve the completeness.

 Step 3 (Mapping into Attributes Conditions): Encode each atomic hazardous state hs by

a condition over object attributes based on spec. This constructs Level 3. If there is no

attribute corresponding to hs, check if hs can be further decomposed. If hs is really atomic,

then revise spec.

 Step 4 (Obtaining Methods): For each attribute condition cond, find methods in spec that

make cond true, by consulting the post-conditions of the methods. If the given specification is

consistent, this step is not difficult.

4.3. Deriving Safety Properties with HNS-HAM

 Suppose that a HNS-HAM ham(o, hc) is constructed with respect to a HNS object o

(defined by spec) and a hazard context hc. Now we derive the safety properties that must be

conformed by o to prevent hc from occurring. For this, we use Levels 1 and 2 of ham(o, hc),

extensively. According to Levels 1 and 2 of ham(o, hc), hc is characterized by a logical

formula fhc consisting of atomic hazardous states. If fhc holds, then the hazard hc is realized.

Conversely, to prevent hc from occurring, we have to assure ¬fhc for all the time. Thus, we

want to derive the safety properties as a set of rules R = {r1, r2, ..., rn}, interpreted as a

conjunction ¬fhc = r1 ∧ r2 ∧ ... ∧ rn. Using the clausal normal form [14] in the classical logic

programming, we can obtain such a set R = {r1, ..., rn} that ri = (P1 ∧ ... ∧ Pm) → (Q1 ∨ ... ∨

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

75

Qn), where Px and Qy are literals. Based on the idea, we derive the safety properties from a

given HNS-HAM as follows.

Input: a HNS-HAM ham(o, hc) constructed for a HNS object o and a hazard context hc.

Step 1: From Levels 1 and 2 of ham(o, hc), derive a logical formula fhc = f(hs1, ..., hsl)

characterizing hc by atomic

hazardous states hsi (1 ≤ i ≤ l).

Step 2: Calculate ¬fhc.

Step 3: Convert ¬fhc into the clausal normal form R = {r1, ..., rn}.

Step 4: Define each ri as a safety property.

Let us derive safety properties for ElectricKettle using the HNS-HAM in Figure 5. According

to Level 1 and 2, we get

fHC1 = (HS11 ∨ HS12) ∧ HS2

Making a negation, and applying the De Morgan’s and distribution lows, we obtain

¬fHC1 = ¬HS11 ∧ ¬HS12 ∨ ¬HS2

= (HS11 → ¬HS2) ∧ (HS12 → ¬HS2)

∧(HS2 → ¬HS11) ∧ (HS2 → ¬HS12)

Thus, we derived the following four safety properties for ElectricKettle to prevent the scald

from occurring.

(P1) HS11 → ¬HS2: When the kettle is in the boiling mode, the lid must not be opened.

(P2) HS12 → ¬HS2: When the setting temperature is higher than 60, the lid must not be

opened.

(P3) HS2 → ¬HS11: When the lid is opened, the kettle must not be in the boiling mode.

(P4) HS2 → ¬HS12: When the lid is opened, the temperature setting must be below 60.

All of the above properties are quite reasonable as the safety instructions of an electric kettle.

Note that the properties P1-P4 are all local safety properties, since they are closed within a

single HNS appliance (i.e., Electric Kettle).

4.4. Updating HNS Specifications with Derived Safety Properties

 Based on the safety properties derived, we update the original specification so that the

safety properties are reflected. To achieve this, we use Levels 3 and 4 of HNS-HAM

extensively. Each safety property is a condition over atomic hazardous states, and Level 3

specifies the correspondence between the atomic states and the object attributes of the model.

So each safety property can be encoded by a condition using attributes. An encoded safety

property can be specified as an invariant in the specification, intended that the property must

hold all the time for the safety. Or, if the safety property is encoded by attributes in the same

appliance, we can specify the property as pre/post-conditions of methods designated by Level

4. Let us update the specification of ElectricKettle in Figure 2, based on the HNS-HAM in

Figure 5 and the safety properties P1 to P4 derived in Section 4.3. First we take (P1): HS11 →

¬HS2. According to Level 3 of the HNS-HAM, (P1) is encoded to the following invariant

over object attributes.

INVARIANT:

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

76

 mode==BOILING -> !(lid==OPEN)

To satisfy the above invariant, we can refine the specification of method setMode() so as to

check the lid status.

 setMode(md) {

 PRE: power==ON && lid!=OPEN;

 POST: mode==md && lid!=OPEN;

 }

 The updated pre-condition says that setMode() can be executed only when the lid is closed.

The post-condition means that setMode() never opens the lid by its execution. Thus, the

unexpected boiling operation when the lid is opened can be avoided. Similarly, we can update

the specifications for P2, P3 and P4.

4.5. Procedure of Proposed Method

 Finally, we sum up the proposed method against the problem formulated in Section 3. If the

proposed method is applied to a HNS appliance, the local safety properties are derived (as

seen in the kettle example). If applied to a HNS service, the global safety property can be

obtained.

 (A) Safety Analysis for HNS Appliance: For each appliance app specified in spec ∈

ASpec,

1) Define hazard contexts hc1, hc2 ... hcx.

Figure 6. HNS-HAM for CookingRreparationService (Gas Poisoning)

2) For each hazard context hci, construct a HNS-HAM ham(app, hci).

3) Derive safety properties p1, p2, ..., pn from ham(app, hci). Put p1, ..., pn in LProp.

4) For all pj , update spec. Put the resultant spec0 in Safe-ASpec.

 (B) Safety Analysis for HNS Service: For each service ser specified in spec ∈ SSpec,

1) Define hazard contexts hc1, hc2 ... hcx.

2) For each hazard context hci, construct a HNS-HAM ham(ser, hci).

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

77

3) Derive safety properties p1, p2, ..., pn from ham(ser, hci). Put p1 , ..., pn in GProp.

4) For all pj , update spec. Put the resultant spec0 in Safe-SSpec.

5. Case study

 As a case study, this section demonstrates analysis of CookingPreparationService,

introduced in Section 1 and specified in Figure 3. Since this service uses a gas system, so let

us consider a hazard context, “gas poisoning”. Figure 6 shows a HNS-HAM for this case

study. As seen in the model, the gas poisoning is caused by “(HS1) gas is being used”, and

“(HS2) air is not ventilated”. Each of these states is further decomposed into two sub-states.

From the HNS-HAM, we get

fHC1 = (HS11 ∧ HS12) ∧ (HS21 ∨ HS22)

Then, compute the negation

¬fHC1 = ¬(HS11 ∧ HS12) ∨ (¬HS21 ∧ ¬HS22)

= (HS11 ∧ HS12 → ¬HS21) ∧

(HS11 ∧ HS12 → ¬HS22)

 From this, we obtain the following two safety properties:

(GP1) HS11 ∧ HS12 → ¬HS21: When the gas valve is opened and the fire is on, the

ventilator must be turned on.

(GP2) HS11 ∧ HS12 → ¬HS22: When the gas valve is opened and the fire is on, the wind

level of the ventilator must not be 0.

(GP3) HS21 → ¬HS11 ∨ ¬HS12: When the ventilator power is in off, the gas valve must not

be opened or fire must not be on.

(GP4) HS22 → ¬HS11 ∨ ¬HS12: When the ventilator wind level is 0, the gas valve must not

be opened or fire must not be on.

 Note that these properties are global safety properties, since these are specified over

different appliances (i.e., the gas valve and the ventilator). Using Levels 3 and 4 of the HNS-

HAM, GP1 and GP2 are translated as the invariants in the specification.

INVARIANTS

(gas.valve==OPEN && gas.fire==ON

-> vent.power!=OFF) && //for GP1

(gas.valve==OPEN && gas.fire==ON

-> vent.windLevel!=0) //for GP2

6. Discussion

6.1. Summary and Future Work

 In this paper, we have presented a method of deriving safety properties and specifications in

the domain of the home network system. Using the proposed hazard analysis model, HNS-

HAM, the potential risks leading to the hazard are analyzed systematically. As a result, safety

properties and their responsible HNS objects are identified, which provides the strong

rationale of the safety of the HNS.

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

78

The derived safety properties and specifications are then taken over to the implementation

and testing phases. By concatenating our previous safety validation method [16] [17] after the

proposed method, we can obtain a consistent HNS service development process with safety

assurance. The current limitation of the proposed method is the completeness of the safety

properties. Whether or not the derived safety properties are complete heavily depends on the

construction process of the HNS-HAM (especially Step 2, see Section 4.2). We are currently

investigating techniques in goal-oriented requirements engineering [6] [1] to develop more

sophisticated construction method.

 To evaluate the effectiveness of the proposed method, we are currently doing more

experiments using actual HNS [12]. It is also interesting to apply the proposed method to

other services other than the HNS.

6.2. Related Work

 Traditionally, the safety issues have been addressed in safety critical systems [7] [8] [9] [10],

such as aerospace systems and nuclear plants. Despite their importance, there are yet little

research work in the ubiquitous computing area, including smart home. Compared to the

ubiquitous applications, the safety critical systems are quite monolithic, where requirements

and system configurations are not frequently changed. Thus, we needed alternative analysis

models suitable for the object-oriented model.

 The analysis using the HNS-HAM is similar to the fault tree analysis (FTA) [15]. However,

compared to the conventional fault tree, the HNS-HAM has the four level of abstractions

customized for the HNS model. Also, our approach is not applied to accidents that were

already happened, which is different from the general FTA. Our idea of safety analysis in a

goal-oriented way was originally motivated by the goal-oriented requirements engineering[6],

which tries to find system requirements in a goal-oriented way. In this area, there is also a

language called GRL [1] for the goal-oriented requirement analysis. Basically they are

usually applied in the requirements stage where no design specification is developed yet. On

the other hand, our problem setting is to find the non-functional requirements (i.e., safety), in

the design and validation phase, assuming that the functional specifications of the HNS are

available.

Acknowledgment

 This research was partially supported by the Comprehensive Development of e-Society

Foundation Software program of the Ministry of Education, Culture, Sports, Science and

Technology, the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young

Scientists (B)(No.18700062) and Scientific Research (B) (No.17300007), and by JSPS and

MAE under the Japan-France Integrated Action Program (SAKURA).

References

[1] Goal-oriented Requirement Language (GRL), available from (www.cs.toronto.edu/km/GRL/).

[2] International Electrotechnical Commission, Household and similar electrical appliances — Safety, IEC 60335-

1, Sep.2006.

[3] The Java Modeling Language (JML), available from (www.eecs.ucf.edu/ leavens/JML/).

[4] G. T. Leavens and Y. Cheon.: Design by Contract with JML, available from (www.jmlspecs.org), May.2006.

[5] P. Leelaprute, M. Nakamura, T. Tsuchiya, K. Matsumoto, and T. Kikuno.: Describing and Verifying Integrated

Services of Home Network Systems, Proc. of 12th Asia-Pacific Software Engineering Conferences (APSEC 2005),

pp.549-558, Dec.2005.

[6] E. Letier and A. van Lamsweerde.: Deriving Operational Software Specifications from System Goals, Proc. of

10th ACM S1GSOFT symposium on the Foundations of Software Engineering (FSE’10), Charleston, Nov.2002.

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

79

[7] N. G. Leveson.: Safeware: System Safety and Computers, Addison-Wesley, 1995.

[8] N. G. Leveson, K. A. Weiss.: A New Accident Model for Engineering Safer Systems, Journal of Safety

Science, Vol.42, No.4, pp.237-270. Apr.2004,

[9] N. G. Leveson.: Safety in Integrated Systems Health Engineering and Management Proc. of Safety Science,

Vol. 42, No. 4, Apr.2004.

[10] N. G. Leveson, K. A. Weiss.: Making Embedded Software Reuse Practical and Safe, Proc. of Foundations of

Software Engineering, Nov.2004.

[11] B. Meyer.: Applying Design by Contract, IEEE Computer, vol.25, no.10, pp.40-51, Oct.1992.

[12] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. Matsumoto.: Adapting Legacy Home Appliances to

Home Network Systems Using Web Services, Proc. of International Conferences on Web Services (ICWS 2006),

pp.849-858, Sep.2006.

[13] M. Nakamura, H. Igaki, and K. Matsumoto.: Feature Interactions in Integrated Services of Networked Home

Appliances -An Object- Oriented Approach-, Proc. of International Conferences on Feature Interactions in

Telecommunication Networks and Distributed Systems (ICFI’05), pp.236-251, Jul.2005.

[14] R. Socher: Optimizing the clausal normal form transformation, Journal of Automated Reasoning, Vol.7, No.3,

pp. 325-336, 1991.

[15] J. Xiang, K. Futatsugi, and Y. He.: Formal Fault Tree Construction and System Safety Analysis, Proc. of

IASTED International Conferences on Software Engineering, pp.378-384, Feb.2004.

[16] B. Yan, M. Nakamura, L. du Bousquet, and K. Matsumoto.: Validating Safety for Integrated Services of

Home Network System Using JML, Journal of Information Processing Society of Japan (IPSJ Journal), Vol.49,

No.6, pp.1751-1762, Jun.2008.

[17] B. Yan, M. Nakamura, L. du Bousquet, and K. Matsumoto.: Characterizing Safety of Integrated Services in

Home Network System, Proc. of 5th International Conferences on Smart homes and health Telematics

(ICOST2007), pp.130-140, Jun.2007.

International Journal of Smart Home

Vol. 3, No. 1, January, 2009

80

