

A Visual Framework for Monitoring and Controlling
Distributed Service Components

Takahiro Kimura†, Haruaki Tamada†, Hiroshi Igaki†,

Masahide Nakamura† and Ken-ichi Matsumoto†

† Graduate School of Information Science, Nara Institute of Science and Technology
{taka-kim, harua-t, hiro-iga, masa-n, matumoto}@is.naist.jp

Abstract The emerging ubiquitous networked technologies enable to integrate distributed software/hardware

components to achieve more value-added services. In order to develop and manage such integrated services effectively, it is
essential to monitor the status of each component during runtime, preferably with an intuitive and visual appeal. In this
paper, we propose a component monitoring framework that achieves the following three requirements: (R1) monitoring status
of components, (R2) control of the components and the integrated services, and (R3) visualization of component's states.
Based on the proposed framework, we have implemented a monitoring system of a home network system, where ten home
appliances are orchestrated to provide value-added services. For the implementation, Flash and Java Servlet have been
extensively used.

Keywords distributed service component, monitoring, visualization, control, framework, Service Oriented Architecture

1. Introduction
The advancement of network and software technologies

enables the rapid and flexible development of software
systems using distributed software components. Various
features of a system are implemented as reusable
components, which can be executed remotely via the
network using technologies like RMI[3], CORBA[2] and
Web Services[7].

Recently in the area of the software components, the
concept of Service-Oriented Architecture (SOA)[6] has
attracted a public attention, and the Web Service [7] is
widely known as an infrastructure to achieve the SOA. In
the SOA, the system features are aggregated into a set of
coarse-grained service. Each service is implemented as a
self-contained service component which does not depend
on the context or state of the other services. The service
components distributed over the network can be loosely
coupled with the platform-independent interfaces. This
enables the rapid development of more value-added
services. Since the SOA facilitates the orchestration of
heterogeneous distributed systems, the application to the
enterprise systems has been widely discussed.

We believe that the SOA fits well with the emerging
ubiquitous environment, where various heterogeneous
hardware devices and software applications are networked
to provide value-added services. Making the features
through service components, the devices and applications
can work together without having the
implementation-specific problems. In [5], we proposed a
method to apply the SOA to a home network system.

Basically, the SOA poses a principle that each service
component should be stateless, in the sense that a service
does not care the state of other services. However, each
service component actually has a state if the component
wraps a stateful object. For instance, a service

component for controlling a DVD player may behave
differently depending on the state of the DVD like; standby,
playing and forwarding.

Thus, when we develop value-added services by
integrating service components involving stateful objects, it
is essential to monitor the state of the components.
Moreover, it is preferable to visualize the state during
runtime in an intuitive manner. Indeed, there exist several
tools for monitoring service components within a SOA
framework [8]. However, the tools basically monitor the
performance and data of workflow instead of the state of
components.

The goal of this paper is to present a framework that can
be used to monitor and visualize the state of service
components, as well as to trigger the component-integrated
services. Specifically, we first define three requirements
for the framework, where the system must be able to
(R1) acquire the current state of the underlying object

during runtime, and
(R2) visualize the current state of the all components

involved in the integrated service,
(R3) allow users to invoke the integrated services.
Then, we have designed the framework based on the above
requirements. For (R1) we embed an API for polling the
state via Java Servlet. Specifically, for (R2) we employ
Flash interface to visualize the component states. To
achieve (R3), we connect the Flash interface with the
components via Java Servlet.

Using the proposed framework, we have implemented a
status monitoring system of a home network system. The
system consists of ten home appliances, each of which is
wrapped by a service component. We have developed eight
kinds of value-added services by integrating the
components. The monitoring system successfully helped
us to capture intuitively, how the integrated services work
and change the state of each appliance.

2. Preliminaries
2.1.

2.2.

2.3.

2.4.

3.1.

Power Play Record

Object

Service
(c)Service

Layer

(c)Software
Layer

(c)Hardware
Layer

PowerPower PlayPlay RecordRecord

Object

Service
(c)Service

Layer

(c)Software
Layer

(c)Hardware
Layer

 Service Oriented Architecture
The service oriented architecture (SOA) [6] is a system

architecture to integrate different systems distributed over a
network with a standard procedure. Each system exports its
own features as services. (a set of tasks, which are coarser
than objects). The internal logic and implementation of a
service are self-contained and encapsulated in the system.
The system exposes only interfaces of the service in the
form of strictly-typed exported methods.

A service user executes the remote exported method and
gets desired results. This remote procedure call is
performed by a standardized platform-independent
framework (like XML/SOAP).

Also, once an exported method is deployed, its interface
definition is not allowed to change. Therefore, the changes
in the internal service logic or service implementation
platform do not influence the service user. Thus, the loose
coupling between the user and the service is achieved. Web
Services [7] are widely known as a major SOA framework.

Fig.1: Example of SOA by DVD Recorder

 Service Component and Integrated Services
Once a system deploys services based on SOA, the

system can be regarded as a reusable software component,
which we call service component. Due to the nature of the
SOA, an external program can access a service component
using a standard interface, without knowing the internal
logic or implementation platform of the service component.

Figure 1 shows an example service component for a
DVD recorder. This component consists of three layers: (a)
a hardware layer of the DVD recorder, (b) a software layer
comprising embedded objects for controlling the hardware,
and (c) a service layer which exposes the features of the
recorder as services by aggregating some objects. In this
example, three services are exported to the network: Power,
Playing, Recording. These services are supposed to be
accessible from network via a certain standard method. In
this paper, we assume Web service [7] for the service
access method.

We can use a single service component for itself.
However, when there are other service components
available over the network (called distributed service
components), combining multiple components together
yields value-added integrated services. For instance, if
we have service components for TV, lights and speakers,
then we integrate them with the DVD recorder to
implement a DVD theater service, where the user can
watch DVD in a theater-like atmosphere.

 Developing Integrated Services
In order to implement the integrated service from

multiple service components, it is necessary to define how
the integrated service executes the individual services
provided by components.

To integrate distributed service components, a
framework called BPEL4WS [1] has been standardized.
BPEL4WS integrates multiple Web Services as a business
workflow. BPEL4WS regards each invocation of a Web
service or data manipulation as an activity, and defines the
execution method among activities (e.g., parallel execution,
sequential execution, etc.). Recently, several support
tools to develop reliable integrated services come onto
market. IBM's WebSphere Business Integration Server
Foundation [8] includes a set of support tools to develop

BPEL-based integrated services. "WBI Modeler" visualizes
the workflow to help the developer to define the
relationships among activities. "WBI monitor" monitors
the runtime behavior of the workflow for performance
measurement and message logging.

 Monitoring Distributed Service
Components

BPEL4WS deals with the total workflow of the
integrated services, and it does not care details of individual
service components. Thus, the existing support tools, WBI
Modeler and WBI monitor, focus only how the workflow is
executed, and monitoring the internal status of individual
service components is out of scope.

However, from the viewpoint of service developer, it
would be more desirable to see intuitively how each service
component behaves when executing the integrated service.
This is especially crucial when the service component
controls the underlying stateful object (like electric
appliance) and the object is not within a directly visible
distance from the developer.

Our goal is to support the development of the integrated
services with distributed service components more
efficiently. To achieve the goal, this paper proposes a
framework to monitor the state of each service components
during runtime.

3. Framework Requirements
In this section, we present three requirements for the

proposed framework. Specifically, the requirements are:
(R1) Monitoring states of service components, (R2)
Visualizing states of service components, and (R3)
Invoking integrated services and service components.
These requirements are intended to be implemented in any
system to monitor the status of the distributed service
components.

 Monitoring states of service components
When developing integrated services using distributed

service components, only what the developer can directly
see is the interface of the services. The developer cannot
(or needs not to) see the internal logic, dependencies
integration logic of the service components. In order for the
developer to check if the components are working correctly,
a reasonable way is to get the state of the component
during runtime.

In general, each service component has a set of principal
properties that characterizes the behavior of the component.
For instance, the DVD recorder would have properties
Power (ON or OFF) and DriveMode (Idle, Playing or
Forwarding). These principal properties dynamically vary
during runtime according to the execution of integrated
services, the direct operation of the service.

So, we define a (current) state of a service component as

a snapshot of values of all the principal properties. As the
first requirement of the proposed framework, a monitoring
system must have a feature to acquire the latest current
state (i.e., the list of property values) of each service
component. Preferably, the state should be obtained
periodically and autonomously, regardless of the user's
action. Also, the state should be represented in an
implementation independent format (like plain text or
XML).

3.2.

3.3.

4.1.

4.2.

4.3.

Service1 Service2 Service3

Java Servlet

FLASH Interface

Integrated
Service

Manager

Proposed Framework

Monitoring State

User

Invoking
Service

Service1 Service2 Service3

・・・

Service1 Service2 Service3Service1 Service2 Service3Service1Service1 Service2Service2 Service3Service3

Java ServletJava Servlet

FLASH Interface

Integrated
Service

Manager

Integrated
Service

Manager

Proposed Framework

Monitoring State

UserUser

Invoking
Service

Service1 Service2 Service3Service1Service1 Service2Service2 Service3Service3

・・・

Service1 Service2 Service3Service1Service1 Service2Service2 Service3Service3 Visualizing state of service components
As stated in the previous requirement, a state of a service

component is obtained in the implementation independent
data. The next requirement is to visualize the state in an
intuitive and clear representation for the developer. The
visualization significantly helps the developer to check
visually if each component behaves as expected, during
runtime of the integrated services.

Preferably, all of the visualized components should be
displayed in one screen, so that the developer can see all
the distributed service components at once.

Fig.2: Overview of the proposed framework

 Invoking integrated services and service
components

In addition to monitoring visually the distributed service
components, the developer should be able to invoke
integrated services or to operate directly some components
from the monitoring system. This is essential for debugging
and testing the integrated services efficiently.

The integrated services are often managed by an external
service manager (e.g., a BPEL engine), which orchestrates
a set of service components necessary for each integrated
service. Therefore, the monitoring system must have a
feature to send a request to the service manager, so that the
service manager triggers the integrated service request.
For this, the monitoring system should send a trigger only,
and should not interfere on the execution logic, integration
scheme, or the context of the integrated services.

On the other hand, the direct operation to each service
component is performed by executing an exported method
of the component. Thus, upon receiving a request from the
developer, the monitoring system should be able to
dynamically invoke the exported method according to the
pre-defined service interface.

4. Design of Framework
Figure 2 shows an overview of the proposed framework.

The boxes in the bottom of the figure represent service
components. These service components are executed by an
integrated service manager is in the right-middle of the
figure. The proposed framework mainly consists of two
parts: the Flash Interface and Java Servlet, which are
surrounded by the dotted oval.

 Flash Interface
In order to visualize the current state of the service

component (Requirement R2 in Section 3), we extensively
utilize Flash as a user interface. Flash is a tool kit
developed by Macromedia for flexible creation of Web
contents involving animation. Using Flash, we represent
each state of a service component by a Flash animation,
which can allow a user to capture the component in an
intuitive and visual manner. To get the current state of a
service component, the flash interface has to access the
service component autonomously during runtime.

For this, we use Action Script, which is a language to

control Flash animations. In the proposed framework, we
associate each event (e.g., mouse click or button press) on
the Flash interface with an action script that accesses a
service component. In fact, the communications between
the Flash interface and service components are performed
via Java Servlet in our framework. This is due to the
security design of Flash toolkit, as well as the
loose-coupling among the Flash interface and service
components, which will be explained in the next section.

 Monitoring Service Components with Java
Servlet

To monitor the current state of each service component
(Requirement R1 in Section 3), we use Java Servlet. In
order for the user to monitor the state of a service
component, we need to first obtain the current state from
the component, and then display the state in the Flash
interface. However, due to the security reason, any Flash
application is, by design, not allowed to access to
applications in external servers. This design issue is critical
for our framework. Therefore, we let Java Servlet to play
a role of proxy. As depicted by dotted arrows in Figure 2,
the Flash interface (with the action scripts) periodically
sends a request to the Java Servlet. Then, the Java Servlet
sends a query to the service components to obtain the latest
states of the components. On receiving the current states, it
returns the result to the Flash interface.

Introducing the Java Servlet as a proxy enables us to
achieve loose coupling between the Flash interface and the
service components. Any changes on the service
components are managed in the Servlet. Also, the
dependencies among service components are monitored by
the Servlet. Therefore, the user and the Flash interface do
not need to concern the changes or the relationships among
components.

 Executing Services with Java Servlet
To allow the user to execute integrated services or

service components, we implement a mechanism of service
invocation in the Java Servlet. Each operation to an
integrated service or a service component is issued by the
user through the Flash interface. Upon receiving a
command, a corresponding action script of the Flash
interface triggers the Java Servlet to execute services.

We implement two methods in the Servlet. The first
method is to invoke the integrated service scenario. When
the user selects a desired service scenario on the Flash
interface, then the method triggers the integrated service
scenario. For this, the method does not care which service
components should be used. The method delegates the

service control to the integrated service manager. The
second method is to operate directly each service
component. For each service component, we prepare
primary interfaces of the component on the Flash interface.
When the user trigger some action on the interface, the
Flash interface passes the location of the service component
and the name of the service to the Servlet as parameters.
Then, the Servlet invokes the corresponding service of the
component. The result of execution is reflected to the
Flash interface according to the monitoring feature
described in Section 4.2.

5. Application to Home Network System
We have applied the proposed framework to a home

network system.

5.1. Home Network System
The Home Network System (HNS) is a system

connecting home electric appliances, such as a TV, lights
and air conditioner, to a local area network at home.
Networking various appliances together can provide
value-added services.

In [5], we proposed a framework to design and
implement the home network system based on SOA
(SOA-based HNS, for short). In the SOA-based HNS, each
appliance is implemented as a service component
consisting of two layers: service layer and device layer, as
shown in Figure 1. In the device layer, the physical
device is controlled by proprietary procedure or protocol.
In the service layer, the appliance exposes device
controlling interfaces as services to the network. The
service layer also has a mechanism to trigger other
appliances based on a given service scenario. Thus, the
appliances can autonomously collaborate with each other
on the service layer to provide integrated services.

In this paper, we prepare ten service components for the
ten home networked appliances shown in Table 1. Each
component has a set of exported methods (services) and a
set of properties. For instance, the air conditioner has two
methods: setPower() and setTemperature() for controlling
power and temperature setting of the air conditioner. For
simplicity, we just present two primary properties Power
and TemperatureSetting which are modified by the
execution of the methods.
Table.1: Example of Home Appliances and Properties
Home appliance Method Property

Air
Conditioner

setPower()
setTemperature()

Power
TemperatureSetting

Thermometer setPower()
setTemperature()

Power
CurrentTemperature

Speaker setPower()
setInput()
setChannel()
setVolume()

Power
Input
Channel
VolumeSetting

Light setPower()
setBrightness()

Power
BrightnessSetting

Illuminometer setPower()
getBrightness()

Power
CurrentBrightness

Door getDoorStatus() DoorStatus
Phone ringing()

connected()
PhoneStatus

DVD player setPower() Power
TV setPower()

setInput()
Power
Input

Blind setPower()
setGate()

Power
BlindStatus

Table.2: Example of service scenarios
Service
ID

Service Name Description

SS1 Auto-TV The brightness of the light is
automatically adjusted with the
illuminometer based on the current
intensity of illumination.

SS2 DVD Theater If the user enters a room from the
door with a door sensor, the light is
turned on.

SS3 Coming Home
Light

When the user turns on the DVD
player, the light becomes dark.
Then, the TV and the speaker start
in the DVD mode.

SS4 Coming Home
Air-Con

When the user watches the TV, the
speaker is turned on.

SS5 Ringing And
Mute

If the telephone rings while the user
is watching the TV, then the volume
of the speaker becomes lower.

SS6 Blind The air-conditioning is optimized
based on the thermometer.

SS7 Sleep If the user enters the room, the
air-conditioner starts and adjusts the
temperature to a comfortable
degree.

SS8 Auto
-Illumination

When the user goes out or goes to
bed, all the appliances are shut
down, and the door is securely
locked up.

We also prepared eight scenarios of integrated services

as shown in Table 2. Each service is realized by
integrating the service components together. For example,
the Auto-TV service is implemented by orchestrating two
components: TV and Speaker.

5.2. Home Network Simulator
For the ten service components and the eight integrated

services, we have implemented a monitoring system based
on the proposed framework, called Home Network Monitor.

5.2.1. Flash Interface
The Flash interface of the Home Network Monitor

mainly consists of two primary features: appliance display
and service scenario display. The appliance display
provides a visual interface for each of the ten appliances
(components). The interface shows a graphic which
animates according to the current state of the component.
The interface also has several GUI components for the user
to operate the component directly. In the service scenario
display, the eight scenarios of the integrated services are
listed. The user can choose one of them and executes the
selected scenario.

When the Flash interface is launched, it obtains current
state (i.e., the current values of the properties) of each
appliance via the Java Servlet. Then, the interface updates
the appliance display based on the obtained states.
If the user executes an integrated service on the service
scenario display, the flash interfaces sends the trigger to the
Java Servlet.
When the user drives the service component directly
through GUI components, the interface passes the name of
the service and its parameter to the Java Servlet.

The result of the execution is reflected on the appliance
display. Figure 3 shows a screen-shot of the flash interface
of the home network monitor.

Air
Conditionor

DVD
Recorder

Invoke
Servlet

Device
Servlet

FLASH
Interface

Service
Component

Manager

Java Servlet
Service

Components

Air
Conditionor

Air
Conditionor

DVD
Recorder

DVD
Recorder

Invoke
Servlet
Invoke
Servlet

Device
Servlet
Device
Servlet

FLASH
Interface
FLASH

Interface

Service
Component

Manager

Service
Component

Manager

Java Servlet
Service

Components

lolo

Fig.3: Screenshot of Home Network Simulator

5.2.2. Java Servlet
We have implemented three features in the Java Servlet

of Home Network Monitor: (a) monitoring properties of
home appliances, (b) updating properties of home
appliances, (c) executing service scenarios. These three
features were implemented within two kinds Java Servlets:
Device Servlet and Invoke Servlet.

Figure 4 represents the component diagram of the Home
Network Monitor. Table 3 represents a list of methods
implemented in the two Servlets. The role of each method
corresponds to one of the above features (a), (b) and (c).

Device Servlet provides a set of control methods to the
Flash interface, which are related to monitoring and
operating the service components. Specifically, Device
Servlet provides three methods: getPropertyList(),
getProperty(), and setProperty().

These methods get or set the current value of properties
(thus, the current state) of each appliances. Upon
receiving a request from the user, the Flash interface
executes one of these methods. The result of the method
invocation is returned in an implementation-independent
format (i.e., plain text), so that the flash can understand the
return value to update the animation.

On the other hand, Invoke Servlet offers two methods,
getAllDevices() and invokeService(), which are related

to the execution of integrated service scenarios. Upon
request from the user, the Flash interface executes
invokeService() method. Then, Invoke Servlet triggers the
scenario execution to the service component manager.
The service component manager is an application module,
which manages and executes the integrated services as well
as service components (appliances), which is out of the
Home Network Monitor.

Table.3: List of methods

Func
tion

Method Servlet Description

getAll
Devices()

Invoke
Servlet

Obtain a list of home
appliances deployed in the
home network

getProperty
List()

Obtain a list of properties for
a home appliance

(a)

getProperty()

Device
Servlet

Obtain a value of selected
property

(b) setProperty() Device
Servlet

Update a value of selected
property

(c) invoke
Service()

Invoke
Servlet

Execute a selected service
scenario

5.2.3.
Figu

Netwo
The m
four ste

Step
Whe

Flash
Invoke
monito

Step
For

calls g
names

Step
For

calls g
values

Step
Base

Flash i
value i
value i

The
certain
continu

5.2.4.
Figu

directly
compo
perform

Step
Whe

the use
the na
parame

Step
The

Fig. 4: Structure of SOA-based HNS
:Flash :Invoke
Servlet

:Service
Component
Manager

:DVDDevice

ad 1. getAllDevices()
1.1 getAllDevices()

2. getPropertyList()
2.1 getPropertyList()

3. getProperty()
3.1 getProperty()

4. update

:Device
Servlet

:Flash :Invoke
Servlet

:Service
Component
Manager

:DVDDevice

ad 1. getAllDevices()
1.1 getAllDevices()

2. getPropertyList()
2.1 getPropertyList()

3. getProperty()
3.1 getProperty()

4. update

:Device
Servlet

Fig. 5: Monitoring properties of home appliances
Monitoring properties of home appliances
re 5 represents a sequence diagram when the Home
rk Monitor monitors the properties of appliances.
onitoring is performed according to the following
ps:
 1: Obtain a list of home appliances
n the user launches the Home Network Monitor, the

interface calls getAllDevices() method of
Servlet, and obtains a list of all appliances to be
red.
 2: Obtain a list of properties
each appliance obtained in Step 1, the Flash interface
etPropertyList() method to gather all the property
of the appliance.
 3: Obtain the current state
each property gathered in Step 2, the flash interface
etProperty() method to obtain the current property
of each component.
 4: Display property values
d on the property values obtained in Step 3, the
nterface updates the appliance display. A property
s basically represented as a plain text. Hence, the
s reflected on Flash as a digit, string or an animation.
Steps 3 and 4 are repeated periodically within a

 interval (usually, every few seconds), in order to
ously monitor the appliances.

Updating properties of home appliances
re 6 represents a sequence diagram when the user
 operates the appliance through the GUI

nents on the appliance display. The process is
ed according to the following two steps:

 1: Get an event from user
n the user operates the GUI, the Flash interface gets
r's event. From the event, the Flash interface obtains
me of appliance, the service to execute, and
ters for the service.
 2: Execute the service
Flash interface executes the requested service, and

:Flash :DeviceServlet :DeviceManager :DVDDevice

request
1. getDevice()

1.1 getDevice()

2. setProperty()
2.1 setProperty()

:Flash :DeviceServlet :DeviceManager :DVDDevice

request
1. getDevice()

1.1 getDevice()

2. setProperty()
2.1 setProperty()

:Flash :InvokeServlet

:Service
Component
Manager

request
1. invokeService() 1.1 invokeService()

:Flash :InvokeServlet

:Service
Component
Manager

request
1. invokeService() 1.1 invokeService()

Fig. 6: Updating properties of home appliances
then sets the new property to the appliance by
setProperty() method.

5.2.5. Executing service scenarios
Figure 7 represents a sequence diagram when the user

executes an integrated service scenario on the Flash
interface. The process is performed according to the
following two steps:

Step 1: Get the choice of service scenario
When the user chooses and execute an integrated service

scenario in service scenario display, the interface identifies
which service scenario should be executed.

Step 2: Execute the service scenario
Based on the scenario selected, the Flash interface calls

invokeService() method of InvokeServlet. The Servlet
triggers the service component manager to initiate the
integrated service requested. Once triggered, the integrated
service is executed by the service component manager.

5.3. Discussion
From the experience in developing the Home Network

Monitor, we summarize the effectiveness of the proposed
framework. Introducing a monitoring application for
distributed service components yields the following
advantages:

- The user can simultaneously monitor all the service
components involved in integrated services locally with
one application.

- The monitoring system helps the user significantly to
check if each service component works as intended.

- Using the monitoring system, the user can debug the
scenarios of integrated services.

Based on the advantages, we consider the application of
the proposed framework, with respect to the development
stage and maintenance stage of service components and
integrated services.

In the development stage, the developer of service
components can use the monitoring application for
regression testing, that is to verify service components
under development (or modification). For this, the
developer does not only confirm the component itself, but
also check the side-effect of the component, which is an
unexpected effect to other components caused by the
modification.

In the maintenance stage, the operator can continuously
monitor all the service components. If necessary, the
operator can directly activate some components, or may
send a maintenance command to the component. Also, the
monitoring system helps the developer to inspire new
integrated services.

Currently, the proposed framework does not address the
creation of integrated services. In the maintenance stage, it
will be necessary to create new integrated services, or
modify the existing service scenarios. The issue of the

service cr
6. Conc

In this
monitorin
extensive
componen
state and

Based o
a monitor

As for
integrated
new servi
Another
interactio
conflicts
framewor
componen
well appl
problem.

[1] Bus
Serv
/dev

[2] CO
gett

[3] Java
http

[4] Mas
Ken
Inte
-An
app

[5] Mas
Ken
Serv
Serv
pp2

[6] M.P
Orie
ACM

[7] W3
/ws

[8] Web
http

Fig. 7: Executing service scenarios
eation is left to our future work.

lusion
 paper, we have presented a framework for
g distributed service components. The framework
ly uses Flash interface to visualize the state of the
ts, and employs Java Servlet to obtain the current

to execute integrated services.
n the proposed framework, we have implemented

ing system of a home network system.
the future work, we plan to add features to edit
 services, which would help developers to create
ces, or to restructure the existing service scenarios.
interesting issue is to monitor the feature
n problem [4], which is known as inconsistent
among integrated services. Since the proposed
k visualizes all the states of the service
ts, we believe that our monitoring framework is

icable to detect and resolve the feature interaction

References
iness Process Execution Language for Web
ices, Version 1.1. http://www-128.ibm.com
eloperworks/library/specification/ws-bpel /

RBA@BASICS. http://www.omg.org/
ingstarted/corbafaq.htm
 Remote Method Invocation (Java RMI).
://java.sun.com/products/jdk/rmi/
ahide Nakamura, Hiroshi Igaki, Haruaki Tamada,
-ichi Matsumoto, "Feature Interacctions in
grated Services of Networked Home Appliances
 Object Oriented Approach-", ICFI2005(to
ear)
ahide Nakamura, Hiroshi Igaki, Haruaki Tamada,
-ichi Matsumoto, "Implementing Integrated
ices of Networked Home Appliances Using
ice Oriented Architecture", ICSOC'04,

69-278, November 2004.
.Papazoglow, D.Georgakopoulos, "Service
nted Computing", In Communications of the
, Vol.46, No.10, pp.25-28, Oct.2003.

C Web Service Activity. http://www.w3.org/2002
/
Sphere Business Integration Monitor.

://www-306.ibm.com/software/integration/wbisf/

