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Summary 
Various software obfuscation techniques have been 
proposed. However, there are few discussions on proper 
use of these obfuscations against imaginable threats. An 
ad-hoc use of obfuscations cannot guarantee that a 
program is sufficiently protected. For a systematic use of 
obfuscations and the verification of the result, this paper 
proposes a goal oriented approach to obfuscation. 
Specifically, we (1) define the capability of an imaginary 
cracker, (2) identify the cracker’s goal, (3) conduct a goal-
oriented analysis, (4) select obfuscations to disrupt all sub-
goals, and (5) apply selected obfuscations to the program. 
As a case study, we define a security goal and a threat 
model for a Java implementation of a cryptomeria cipher 
(C2) program, and then, based on the model, we 
demonstrate how the goal oriented analysis is conducted 
and obfuscation techniques are applied to places where 
they are needed. 
Key words: 
Software Protection, Reverse engineering, Secret Hiding, 
Program Analysis 

1. Introduction 

A variety of confidential information is present in a typical 
software product, such as 1) subroutines and algorithms 
that are valuable trade secrets and/or related to system 
security, e.g. decryption algorithms of digital rights 
management (DRM) systems [1]; 2) constant values and 
text strings related to system security, e.g. decryption keys 
of DRM systems [4][5]; 3) internal function points, e.g. 
branching statements for license checking [17]; 4) internal 
interfaces, e.g. function call statements to a secure library 
module; and 5) external interfaces, e.g. secret “service 
entrances” that provide full access to the systems [13]. 
Many computer systems have been “cracked”, with 
serious damages to the producers and/or suppliers of the 
systems.  For example, secret codes for the CSS 
encryption standard for DVD media were revealed in 1999 
[28]. 

In order to hide secrets in software implementation, a 
number of obfuscation techniques have been proposed 
including lexical obfuscations (e.g., comment removal, 
identifier renaming and debugging info removal, etc.) [33], 
data obfuscations [7][9][29], and control-flow 
obfuscations [6][25][35]. These obfuscation techniques 
transform a program so that it becomes more difficult to 
understand, yet is functionally equivalent to the original 
one [8]. 

However, there is no systematic method on how to 
apply obfuscation techniques appropriately. So, it is 
unclear which obfuscation technique should be used. Also, 
it is unclear which portion of the program should be 
obfuscated, and how much effects of obfuscation can be 
expected. These problems are caused because many 
obfuscation techniques do not count the purpose and the 
target of a cracker enough. 

The research objective of this paper is to establish a 
goal-oriented analysis framework for proper use of 
existing obfuscation techniques. Our key idea is to assume 
an imaginary cracker with his/her explicit purpose (goal) 
and the target (program), then break the goal down into 
pieces, each of which an appropriate obfuscation is 
applied to. 

The remainder of the paper first describes the status 
quo of software obfuscation (Section 2). Next, proposes a 
framework for goal-oriented analysis to software 
obfuscation (Section 3). Afterwards, we describe a case 
study to apply the proposed framework to a practical 
cipher program (Section 4); and in the end, summary will 
be shown (Section 5). 

2. Software Obfuscation Techniques and 
Their Problems 

From a perspective of selecting proper obfuscation 
techniques, we need to consider the type of target to which 
each obfuscation technique can be applied. Many 
obfuscation techniques are generic ones, i.e. they are 
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applicable to any types of programs. One the other hand, 
there exist strong but target-specific obfuscations. Below 
introduces each type and its problems. 

2.1 Generic Obfuscation Techniques 

Most obfuscation techniques are generic ones, e.g. control 
flow obfuscation [6][25][35], inter-module call relation 
obfuscation [26], replacing a high-level instruction with a 
set of low-level instructions [20], inserting opaque 
predicates [10], transforming data structures [9], renaming 
identifiers [33], data obfuscation using homomorphism 
[3][27], use of self-modifying code [16], etc. These 
obfuscation techniques are focusing on building a 
“complex” program rather than preventing a cracker’s 
actions to achieve his/her goals. Many of these are light 
weight, i.e. applicable to resource-limited environment 
because of their small performance penalty. 

Unfortunately, it is unclear how effective these 
obfuscations are in protecting confidential information 
inside a program. It is because “complex” is not equal to 
“difficult to crack”. In addition, many of obfuscations do 
not assume a clear threat model, a model of cracker’s 
behavior to break the security. 

2.2 Target Specific Obfuscation Techniques 

One of the most powerful obfuscation methods for 
protecting cipher software is a white-box cryptography, 
which was originally proposed by Chow et al. [4][5] and 
now became a hot research topic [12][18]. In this method, 
a set of computations using a secret key are replaced with 
lookup tables so that the key is hidden inside the tables 
and becomes unrecognizable to the cracker. 

However, although this method can add strong 
protection to a specific cipher program, its application area 
is quite limited since it requires a large memory space 
(several megabytes) and imposes a serious performance 
penalty. Therefore, especially for resource-limited 
environments, such as mobile devices, we need an 
alternative way to protect cipher programs from crackers. 

2.3 Toward Systematic Application of Obfuscation 

Since the application area of target specific techniques are 
limited, we focus on the light weight, generic obfuscation 
techniques to protect any program containing security-
sensitive data. To identify which obfuscation technique to 
be employed and which portion of the program to be 
obfuscated, we need to clarify an imaginary cracker’s 
capability, and also, his/her potential activities of program 
analysis, so that we are ready to select a set of obfuscation 
techniques to disrupt each potential activity. 

3. A Framework for Goal-Oriented Analysis 

3.1 Basic Idea 

Figure 1 shows a concept of the proposed approach in 
contrast to the conventional approach to software 
obfuscation. The conventional approach in Figure 1 (a) 
takes a program P as an input and conducts a generic 
obfuscation O(x) to produce an obfuscated program P’.  In 
this approach, O(x) should be responsible to protect 
secrets included in any given P against any imaginary 
crackers; however, such responsibility is not enough 
considered in conventional generic obfuscation techniques. 
In contrast, the proposed approach in Figure 1 (b) takes 
both P and a cracker model as inputs and conduct a goal 
oriented analysis to produce a goal tree, which connects a 
cracker’s goal with its sub-goals. Then, the proposed 
approach applies existing obfuscation techniques 
O1(x)…On(x) to proper places in P to disrupt all sub-goals 
in the goal tree.  

 
In our previous work, we proposed a cracker-centric 
approach to give a guideline for employing existing 
obfuscation method to disrupt cracker’s actions [37].  
However, the paper did not discuss the systematic 
application of obfuscation techniques.  Consequently, in 
this paper we propose a goal-oriented approach to 
systematically protect confidential information in a 
program.  The key idea is to assume an imaginary cracker 
with his/her purpose and target and to break down the goal 
into pieces, each of which an appropriate obfuscation is 
applied to.  To implement the key idea, at first, we 
determine a capability of an imaginary cracker.  Next, we 
identify a cracker’s goal, and conduct a goal oriented 
analysis.  The goal oriented analysis is to decompose and 
to refine the goal into more specific sub-goals and repeat 
the decomposition until no sub-goal can be further 
decomposed.  Finally, we select an obfuscation technique 
to prevent understanding for every terminal sub-goal. 

Obfuscation
O(x)

Program P

Obfuscated
program P’

(a) Conventional Approach (b) Proposed Approach
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Fig. 1 A concept of the proposed method 
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Our goal-oriented approach consists of the following five 
steps. 

Step1. Define the capability of an imaginary cracker. 
Step2. Identify a cracker’s goal. 
Step3. Conduct a goal-oriented analysis. 
Step4. For every terminal sub-goal, select obfuscation. 
Step5. Apply the selected obfuscations to the program. 

From next subsection, we describe details of each step. 

3.2 Define the Capability of an Imaginary Cracker 

When we consider employing a security mechanism to 
achieve any security goal, we must define a realistic threat 
model, a model of what a cracker is able (and not able) to 
do in the real world. For example, a cracker may have an 
executable (binary) program and an understanding of the 
principles of an algorithm used in the program. Also, it 
will be reasonable to assume that the cracker has a static 
analyzer such as a disassembler and a decompiler, as well 
as a dynamic analyzer (debugger) with “breakpoint” 
functionality. 

In [24], Monden et al. characterized a cracker’s 
knowledge and resources along three dimensions, (1) 
understanding level of a protection mechanism being used, 
(2) skill level of system observation, and (3) skill level of 
system control. These dimensions seem useful for 
evaluating any software protection mechanism; however, 
in this paper, the dimension (1) is presently out of the 
scope since we do not assume any particular protection 
method yet. Besides the dimension (1), we need to 
characterize the cracker’s knowledge (understanding 
level) of a target system. 

Based on the discussion above, this paper 
characterizes the capability model of an imaginary cracker, 
from three dimensions: (A) knowledge, (B) observation 
and (C) control. Below describes a skeleton of capability 
description for each dimension assuming a very skillful 
cracker. 
 (A) Knowledge 

The cracker has full knowledge of the principles and 
external specification of a program. 

 (B) System Observation 
The cracker owns a binary file, disassembled code 
and/or decompiled code of a target program P, as well  
as a computer system M in which P is executed. The 
cracker has a debugger with breakpoint functionality 
that can observe internal states of M, e.g. memory 
snapshot of M, audio-visual outputs of M and the input 
and output value of P. The cracker also observes the 
execution trace of P, i.e. a history of executed opcodes, 
operands and their values. 

(C) System Control 

The cracker operates the keyboard and mouse inputs of 
M, as it executes P with an arbitrary input. The cracker 
can change the instructions in P as well as the operand 
values and the memory image of M in any desired way, 
before and/or during running it on M. 

Under the capability description above, crackers have 
various avenues of attack. They might inspect 
disassembled code of P and find a portion of code that 
implements a particular part of an algorithm being used in 
P. They also might observe a stack memory to find 
candidates of a secret data pushed onto the stack memory 
during execution [2]. Furthermore, they might collect 
multiple execution traces of different inputs, and compares 
them to find candidates of a fixed data appeared in 
operand values that are insensitive to the inputs [36]. 

3.3 Identify Cracker’s Goal 

In the second step of our analysis, we identify cracker’s 
goal. For the given program P, we define a specific goal, 
for which the cracker reverse-engineer P. 

Here we assume of protecting a typical cipher 
program in which DES algorithm was used (Figure 2).  
The input of the program is a cipher text sequence, which 
is an encrypted digital media content. The output is a clear 
text sequence, which is the decrypted audio or video 
media.  

As shown in Figure 2, DES is a Feistel network-
based block symmetric cipher. Inside the program, the 
cipher text is split into left (upper bits) and right (lower 
bits). Then, from the secret key K, the key scheduler 
generates a round key kn for each decryption round. 
Afterwards, the Feistel function de-scrambles the cipher 
text using the round key. This step is repeated 16 rounds, 
and finally the data is decrypted. 
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Fig. 2 Overview of DES algorithm 
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There are several critical data that must be protected from 
crackers in DES program: (1) the secret key K, (2) round 
keys k1, …, k16 and (3) secret data table often included in 
Feistel function. The cracker’s goal would be to extract 
these secret information from the program. For simplicity, 
this paper assume extracting (2) round keys as the goal to 
explain our idea in the following subsections. 

 

3.4 Conduct a Goal-Oriented Analysis 

Given a cracker’s goal, such as “finding round keys”, a 
cracker may have several avenues (sub-goals) to achieve 
the goal. Also, there would be smaller sub-sub-goals that 
need to achieve each sub-goal. In our analysis, we 
describe such goal breakdown structure as a goal tree (an 
AND-OR graph).  

Table 1 describes symbols we use to build a goal tree. 
These symbols were typically used in Fault Tree Analysis 
(FTA) [34] to decompose a failure into its possible causes. 
As shown in Table 1, we have three types of goals: (1) 

root goal, (2) intermediate goals and (3) terminal goals. 
These goals are connected one another by either an AND 
gate or an OR gate. If a goal is connected to lower 
(intermediate or terminal) goals by an AND gate, this 
means the cracker needs to complete all the lower goals to 
achieve higher goal. On the other hand, if a goal is 
connected to lower goals by an OR gate, the cracker needs 
to complete either one of lower goals. In addition, if the 
goal tree grew too large to draw in a limited space, 
symbols “transfer in” and “transfer out” could be used to 
divide the tree into parts. 

 Below describes a basic (top-down) procedure to 
build a goal tree: 
(1) Set the root goal at the top of a goal tree. Figure 3 

describes an example of a goal tree having “find 
round keys” as a root goal. 

(2) Break the goal down to intermediate goals that a 
cracker might find based on Cracker’s Capability 
Model defined in Section 3.2. In Figure 3, the goal 
“find round keys” is decomposed into two 
intermediate goals “Find keys in F-function” and 
“Find keys in key scheduler” because round keys 
appears in both F-function and the key scheduler. 

(3) Connect the relation between identified goals and the 
higher goal either by an AND gate or an OR gate. In 
case of Figure 3, intermediate goals “Find keys in F-
function” and “Find keys in key scheduler” are 
connected to the higher goal by an OR gate. 

(4) For each indentified (intermediate) goal, if there 
seems no sub-goal that contributes to achieve the 
goal, then set the goal as a terminal goal in the tree. 
Otherwise. Repeat (2) … (4) until all the leaf goals 
become terminal ones. 

The procedure described above is a top down approach, 
which is a straight forward way to build a goal tree; 
however, using the bottom up approach together with the 
top down approach would be helpful to build the tree. 
Below describes the bottom up approach to supplement 
the top down approach. 
(1) Identify any clues that the cracker might find in the 

target program based on Cracker’s Capability Model. 
Here, a clue means a piece of information that might 
contribute to achieve the root goal. For example, an 
operator “XOR” can be a clue since a lot of XORs 
are expected to appear in a DES cipher routine. 

(2) Identify abstract clues or intermediate goals that the 
cracker might find based on primitive clues identified 
in (1). For example, “F-function” can be an abstract 
clue because F-function contains a lot of XOR 
operators. Since “Locate F-function” is an 
intermediate goal identified in the top down approach 
(Figure 3), “Finding operator XOR” is connected to 
it as a lower goal.  

 

Table1: Goal tree symbols 

 

Root goal 
The final goal of a cracker in 
attacking the target system.  

 

Intermediate goal 
A sub-goal decomposed from the 
parent node (root goal or an 
intermediate goal.) A cracker 
needs to complete intermediate 
goals before achieving the root 
goal. 

 

Terminal goal 
A primitive sub-goal that cannot 
be decomposed further. 

 

AND gate 
A gate that indicates all lower 
goals must be completed to 
achieve the higher goal. 

 

OR gate 
A gate that indicates either one or 
more goals must be completed to 
achieve the higher goal. 

 

Transfer in 
A transfer node connected to a 
“transfer out” node of other goal 
tree (child tree). 

 

Transfer out 
A transfer node connected to a 
“transfer in” node of other goal 
tree (parent tree). 
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3.5 Select an Appropriate Obfuscation 

For each terminal goal identified in Section 3.4, we select 
an appropriate obfuscation to disrupt the cracker achieving 
the terminal goal. Figure 4 shows an example of selecting 
obfuscation techniques. In this example, in order to 
prevent the cracker from “finding the operator XOR”, we 
employ “operator translation obfuscation”. Also, to disrupt 
finding a 32 bit integer value, we employ data type 
obfuscation (e.g. splitting 32 bit integer variable into four 
8 bit variables). Similarly we employ a control flow 
obfuscation to hide “16 times loop”. 

3.6 Apply Selected Obfuscations 

We apply all the obfuscations selected in Section 3.5 to 
the target program. As a result all terminal goals become 
difficult to achieve, which means all inter-mediate goals 
become difficult to achieve. Therefore, the root goal “find 
round keys” also becomes difficult to achieve. 

4. Case Study 

To explain how to apply our approach to an actual 
program and to show how it works, this Section introduces 
a case study to obfuscate a cipher program typically used 
in DRM systems. 

4.1 Target Program 

Here we assume of protecting a typical DRM program in 
which cryptomeria cipher (C2) algorithm was used. 
Overview of C2 algorithm is described in Figure 5, and 

the source program (written in Java) to be obfuscated is 
shown in Figure 8. This algorithm is used in CPPM 
(Content Protection for Prerecorded Media) / CPRM 
(Content Protection for Recordable Media) scheme [1]. 

As shown in Figure 5, C2 is a Feistel network-based 
block symmetric cipher just like DES. The box “F” 
indicates the Feistel function. Figure 6 shows details of the 
Feistel function. The major distinction point is that, C2 
uses arithmetic addition and subtraction while DES does 
not. (This paper assumes that the C2 program does not 
contain a key scheduler function because we assume using 
ECB cipher mode (which does not require the key 
scheduler) and also we wanted to keep the example simple. 

4.2 Crackers’ Goal and Capability Model 

4.2.1 Knowledge 

Since the specification of C2 algorithm is open to public 
[1], the cracker’s goal here is to find all round keys in 
Figure 8 so that the cracker is able to write his/her own 
program that can decrypt existing DRM media contents. 

By reading the C2 specification [1], the cracker will 
understand the C2 algorithm (Figure 5) and obtains the 
following knowledge. 
• Round keys ki are either supplied from a key schedule 

routine or directly written in P as constant values. In 
the former case, there exists a device key K in P, and 
K is supplied to the key schedule routine. In the latter 
case, both K and the key schedule routine may not 
exist in P. In this case, the cracker’s goal is to find all 
the round keys (this is the case of this paper.) 

• The number of rounds (iterations) is 10. So, there are 
10 round keys k1…k10. 
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• The length of each round key is 32 bit. 

• The input block size is 64 bit. A block is divided into 
L (upper 32 bit) and R (lower 32 bit). 

• There is a Feistel function F in P. Either L or R is 
input to F in each round. 

• There is a subtraction expression right after F. 

Similarly, as for the Feistel function F (Figure 6), the 
cracker should have the following knowledge. 
• Either L or R is added to a round key. This indicates 

that there exists in P an “add” opcode that takes two 
32 bit operands. 

• The result of addition X (32 bit) is divided into four 8 
bit blocks x1 … x4. It can be guessed that this division 
is done by statements “x1 = (X >>> 24) & 0xff, x2 = (X 
>>> 16) & 0xff, x3 = (X >>> 8) & 0xff, x4 = X & 
0xff.” 

• The lowest 8 bit block x4 is translated by S-box table. 
Here, the S-box table is a set of 256 8 bit values. This 
indicates there is an array having 256 elements in P. 
The translation can be done by a reference to the array, 
e.g. “S-box_array[x4].” 

• Remaining 3 blocks x1…x3 are XOR’ed with 0xc9, 
0x2b, and 0x65, respectively. This indicates there 
exist XOR expression and constant values 0xc9, 0x2b 
and 0x65 in P. Afterwards, these 3 blocks are rotated 
leftward 2 bit, 5 bit, and 1 bit, respectively. 

• Then, four blocks are concatenated back to 32 bit 
value. This value is then XOR’ed with 9 bit rotated 
value and 22 bit rotated value. This indicates there 
exist “shift” opcode and constant values 9 and 22 in P. 
It can be guessed that the concatenation was done by 
an expression “x1 << 24 | x2 << 16 | x3 << 8 | x4.” 

4.2.2 Observation and Control 

The cracker uses disassemblers and decompilers to 
statically analyze the program. Sun Microsystems provides 
java disassembler (known as “javap -c” command). Also, 
Java disassembler D-Java, which produces jasmin format 
assembly code [21] is provided by Meyer [22]. 
Disassembled code can be re-assembled back to class files 
by jasmine assemblers [23][30]. Various java decompilers 
are also available although in most cases, they produce 
imperfect java source code [32]. The cracker also uses 
debuggers, such as jdb, provided by Sun Microsystems, 
IDA Pro [14] by Hex-Rays, Omniscient Debugger [15] by 
Bil Lewis. 

 

4.3 Goal-Oriented Analysis 

We assume that the cracker’s root goal is to “find round 
keys” in the C2 program (Figure 8) that needs to be 
obfuscated. Based on this root goal, we conducted a goal-
oriented analysis and built a goal tree (Figure 7). Below 
describes an example of a top-down approach to build a 
goal tree. 

There are two potential avenues to achieve the root 
goal “find round keys”: one is to “find key candidates in 
constants” via static analyses and the other is to “find key 
candidates in variables” via dynamic analyses (in addition 
to static analysis). These two avenues were set as sub-
goals of the root goal in Figure 7. 

To achieve the sub-goal “find key candidates in 
constants”, we focus on the characteristics of constants 
where the key candidates could be found. Such 
characteristics can be considered as “clues” that might 
contribute to achieve the goal. As shown in Section 4.2.1, 
each key is 32 bit length. Also in the actual program 
(Figure 8), key values are assigned to an array sk[] as a set 
of 32 bit constants by “int sk[] ={ 0x789ac6ee, 
0x79bc3398,…}”. These 32 bit constants could be 
identified by disassembling the program, although not all 
32 bit constants in the disassembled code are round keys. 
Therefore, “find 32bit integers” can be a lower goal of 
“find key candidates in constants”. We consider this a 
terminal goal, which cannot be decomposed further. 

Now we decompose the other avenue “find key 
candidates in variables”. There are two areas in the 
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program where a variable potentially possess a key value: 
(1) inputs of F-Function and (2) key manipulation if F-
Function. In the actual program (Figure 8), a key value 
hold the variable sk[] is passed to the variable key in the F-
Function. Also, inside the F-Function, the variable key is 
used to proceed with the decryption. These avenues could 
be discovered by the cracker based on the knowledge 
described in Section 4.2.1 and the capability in Section 
4.2.2. Therefore, we set two sub-goals “inspect inputs of 
F-Function” and “inspect key manipulation in F-Function” 
as lower goals of “find key candidates in variables”. 

For both sub-goals “inspect inputs of F-Function” 
and “inspect key manipulation in F-Function”, the cracker 
needs to find the F-Function. Therefore, we set lower goal 
“find the Feistel function” in Figure 7. 

We consider two types of clues that might contribute 
to achieve the goal “find the Feistel function”: (1) clues 
related to function calls for F-Function and (2) clues that 
comes from the characteristics of F-Function itself. As for 
the former clues, “10 times loop” and “SUB operation” are 
big clues since F-Function is called 10 times in the C2 
algorithm and SUB operation is required right after calling 
F-Function as shown in Figure 5. As for the latter clues, 
we focus on the distinctive items in the F-Function: (1) 
distinctive values, (2) ADD operator, (3) S-box, (4) 32 bit 
rotate function, (5) 8 bit rotate function and (6) 
concatenate function. When the cracker finds one of these 
clues in a certain program area, he/she may think there 
might be the F-Function in that area. And, the cracker may 
try to find other clues in the same (or neighborhood) area 
so that he/she becomes more confident that he/she surely 
found the F-Function. Thus, all these clues should be 
included in the goal tree so that they are obfuscated in the 
later step of our framework. 

Further goal decompositions are shown in Figure 7. 
For each remaining sub-goal, we inspected the possibility 
of further goal decomposition, by thinking of any smaller 
actions to achieve the sub-goal, or by thinking of any clues 
that might contribute to achieve the sub-goal. If no more 
decomposition was available, then we set the goal as a 
terminal goal.  Finally, 27 sub-goals, including 12 
intermediate sub-goals and 15 terminal sub-goals, have 
been identified as shown in Figure 7. 

4.4 Select an Appropriate Obfuscation 

Due to limited space, here we focus on four sub-goals in 
the goal tree (labeled “A”, “B”, “C” and “D” in Figure 7) 
to be obfuscated. 
 
4.4.1 Obfuscating Distinctive Values 

Here we try to disrupt the cracker’s action to achieve the 
sub-goal “identify distinctive values 0x65, 0x2b, 0xc9” 
(labeled “A” in Figure 7.) This sub-goal contributes to 

achieve the upper goal “find Feistel function”, because 
constant values 0x65, 0x2b and 0xc9 are expected to 
appear in the Feistel function of C2 algorithm (Figure 6). 

In Figure 8, a program to be obfuscated, these 
constant values appears in the function “public static int 
F(int data, int key)”. In this function 0x65 appears in the 
statement: 

u = (byte)(v[0] ^ 0x65); 

To hide 0x65, we split it into two values 0x21 and 0x44, 
which satisfy “0x65 = 0x21 XOR 0x44.” By using these 
two values we could replace the statement with the 
following two statements: 

u = (byte)(v[0] ^ 0x21);  
u = (byte)(u ^ 0x44); 

Similarly, we hid other two constants 0x2b and 0xc9 by 
exploiting the relations “0x2b = 0x28 XOR 0x03” and 
“0xc9 = 0x41 XOR 0x88.” The resulting obfuscation is 
labeled “A” in Figure 9. 
 
4.4.2 Obfuscating 10 Times Loop 

Next we try to disrupt achieving the sub-goal “identify 10 
times loop” (labeled “B” in Figure 7.) This sub-goal also 
contributes to achieve the upper goal “find Feistel 
function”, because F-Function is called 10 times in the C2 
algorithm (Figure 5). In our example, we simply applied 
loop unrolling to remove the 10 times loop (label “B” in 
Figure 9). 
 
4.4.3 Obfuscating Concatenate Function 

Next we obfuscate the concatenate function (label “C” in 
the goal tree of Figure 7). A concatenate function is to 
concatenate four 8 bits values into a 32 bits value.  The 
simplest implementation is t = v[3] << 24 | v[2] << 16 | 
v[1] << 8 | v[0] where v is an array contains four 8bit 
values, and t is the resultant value. To identify the 
concatenate function, a cracker would find clues such as 
values 24, 16 and 8, bit shift operator “<<” and OR 
operator “|”. Actually, in Figure 8, the target of 
obfuscation is implemented as the following statements: 

t = (int)v[3] << 24 | (int)v[2] << 16 | (int)v[1] << 8 | 
(int)v[0]; 

To remove bit shift operators “<<”, we used multiplication 
instead. The leftward n bit shift can be replaced by 
multiplication by 2n.  For example, v[3] << 24 can be 
replaced by v[3] * 16777216. By this replacement, the 
distinctive value “24” is also removed (replaced by 
16777216 = 224) 

To remove OR operators “|”, we exploited the De 
Morgan’s law “P | Q = ~(~P & ~Q)” so that OR is 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 
 

 

66 

replaced by NOT and AND operators. As a result we 
obtained: 

t = ~(((~((int)v[3] * 16777216) & ~((int)v[2] * 65536) 
& ~((int)v[1] * 256)) & ~((int)v[0])); 

4.4.4 Obfuscating 32 Bit Integers 

Next we obfuscate 32 bit integers, which implement round 
keys (label “D” in Figure 7). The cracker would try the 
brute force attack and monitor every 32 bit value 
appearing in the assembly code or in the stack [2] to find 
the round key.  To protect the key from the attack, the key 
value must be transformed. 

In Figure 9 (label “D”), a homomorphic 
transformation by a linear function [29] was applied to key 
values sk[].This method transforms each data by a linear 
function (we used f(x) = 4x + 3.) By this transformation, a 
key 0x789ac6ee was encoded as 0x3ffb81617L (= 4 * 
0x789ac6ee + 3). This encoded key is then used in the 
Feistel function in the statement: 

  t = data + key; 

To compute with the encoded key, the statement “t = data 
+ key” is replaced with “t = data * 4 + key” so that 
resultant value t holds an encoded value. In the later, when 
clear text of t is required, we compute inverse 
transformation f -1(x) = (x - 3) / 4 so that t becomes non 
encoded value. The resultant program is shown in Figure 9. 

Important things here is that, during the above 
computation, the original key value 0x789ac6ee appears 
neither in constants, variables nor the stack. Instead of 
using linear encoding, we could also consider using 
residue encoding, bit exploded encoding [7], secret 
sharing homomorphism [3][27], variable merging [11] and 
the use of error collecting code [19] to hide the key value. 

After transforming keys by a homomorphic 
transformation or by other techniques, transformed keys 
should be implemented as a set of smaller (e.g. 8bit) sub 
keys so that it becomes more difficult to find key 
candidates for the cracker. 

4.5 Hiding Obfuscation 

After all obfuscations were applied, i.e. all the paths from 
leafs to the root of the goal tree were blocked by 
obfuscations, we need to carefully inspect the obfuscated 
program if there exists any clue to discover the secret. 

Since obfuscation methods themselves have 
distinctive features, we need to hide them so that the 
cracker can not recognize which obfuscation method is 
being used. For example, if we employ residue encoding 
[7] to hide round keys, a lot of modulo opcodes will be 
introduced in the obfuscated program. In this case, we 
need to write our own (obfuscated) modulo routines 
instead of simply using module opcodes. 

5. Summary 

This paper proposed a goal-oriented framework of 
applying existing obfuscation techniques to hide any 
secret in a program. This paper also demonstrated how the 
proposed framework could be applied to a cipher program 
through a case study with C2 cipher. 

Our future work is to evaluate the proposed 
framework with other programs and to develop a guideline 
for building a goal tree and for selecting appropriate 
obfuscations. 
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Fig. 7 Goal tree of C2 cipher 
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/* C2 decryption in ECB (Electronic Code Book) 
mode: */
public static void c2_d(int inout[]) {
int L, R, t, round, i;
int ktmpa, ktmpb, ktmpc, ktmpd;

/* Round Keys */
int sk[] ={

0x789ac6ee, 0x79bc3398,
0x48d15d62, 0xb3c4da86,
0xabcde483, 0xc248048f,
0xfda00b6f, 0xfd600e69,
0xfe140e66, 0xffee0585

};

/* Input Conversion */
L = inout[0]; R = inout[1];

for(round=MaxRound-1;round>=0;round--) {
/* Feistel network */

L -= F(R, sk[round]);
t = L; L = R; R = t; // swap

}
t = L; L = R; R = t; // swap cancel

/* Output */
inout[0] = L; inout[1] = R;
return;

}

/* F is the Feistel round function: */
public static int F(int data, int key) {
int t;
byte v[] = new byte[4];
byte u;

/* Key Insersion */
t = data + key;

/* Secret Constant */
v[3] = (byte)((t >>> 24) & 0xff);
v[2] = (byte)((t >>> 16) & 0xff);
v[1] = (byte)((t >>> 8) & 0xff);
v[0] = SecretConstant[t&0xff];

u = (byte)((v[0]&0xff) ^ 0x65);
v[1] ^= lrot8((u&0xff), 1);

u = (byte)((v[0]&0xff) ^ 0x2b);
v[2] ^= lrot8((u&0xff), 5);

u = (byte)((v[0]&0xff) ^ 0xc9);
v[3] ^= lrot8((u&0xff), 2);

/* Concatenate & Rotate */
t = (int)v[3] << 24 | (int)v[2] << 16 | 

(int)v[1] << 8 | (int)v[0];
t ^= lrot32(t,9) ^ lrot32(t,22);
return t;

}

/* Logical left rotate */
public static byte lrot8(int x, int n) {

return (byte)( (x << n) | ( x >>> (8-n) ) );
}

public static int lrot32(int x, int n) {
return ( (x << n) | ( x >>> (32-n) ) );

}
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Fig. 8 Source code of C2 cipher (before obfuscation) 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 
 

 

71

 

/* C2 decryption in ECB (Electronic Code 
Book) mode: */
public static void c2_d(int inout[]) {
int L, R, t;

/* Round Keys */
long enc_key[] ={

0x3ffb81617L, 0x3f850399bL,
0x3f58039a7L, 0x3f6802dbfL,
0x30920123fL, 0x2af37920fL,
0x2cf136a1bL, 0x12345758bL,
0x1e6f0ce63L, 0x1e26b1bbbL

};

/* Input Conversion */
L = inout[0]; R = inout[1];

L -= foo(R, enc_key[0]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[1]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[2]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[3]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[4]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[5]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[6]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[7]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[8]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[9]);

/* Output */
inout[0] = L; inout[1] = R;
return;

}

/* foo is the Feistel round function: */
public static int foo(int data, long enc_key) {
long t, t2, t3;

int tt;
byte v[] = new byte[4];
byte u;

/* Key Insersion */
t = data * 4 + enc_key ;

/* Secret Constant */
t = (t - 3) / 4;

t3 = t / 256;  t3 /= 256;  t3 /= 256;
t2 = t / 256;  t2 /= 256;

v[3] = (byte)(t3&0xff);
v[2] = (byte)(t2&0xff);
v[1] = (byte)((t/256)&0xff);
v[0] = SecretConstant[(int)t&0xff];

u = (byte)(v[0] ^ 0x21); 
u = (byte)(u ^ 0x44); 

v[1] ^= lrot8(u,1);
u = (byte)(v[0] ^ 0x28);
u = (byte)(u ^ 0x03);

v[2] ^= lrot8(u,5);
u = (byte)(v[0] ^ 0x41);
u = (byte)(u ^ 0x88);

v[3] ^= lrot8(u,2);

/* Concatenation & Rotation */
tt = ~((~((int)v[3] * 16777216) & ~((int)v[2] 

* 65536)) & (~((int)v[1] * 256) & ~((int)v[0])));
tt ^= lrot32(tt,9) ^ lrot32(tt,22);
return tt;

}

/* Logical left rotate */
public static byte lrot8(int x, int n) {

return (byte)( (x << n) | ( x >>> (8-n) ) );
}

public static int lrot32(int x, int n) {
return ( (x << n) | ( x >>> (32-n) ) );

}
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Fig. 9 Source code of C2 cipher (after obfuscation) 


