
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

59

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

A Goal-Oriented Approach to Software Obfuscation

Hiroki Yamauchi,† Akito Monden, † Masahide Nakamura,††

 Haruaki Tamada, ††† Yuichiro Kanzaki†††† and Ken-ichi Matsumoto†

†Nara Institute of Science and Technology, 8916-5 Takayama Ikoma Nara, Japan
††Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Japan

†††Kyoto Sangyo University, Motoyama Kamikamo Kyoto-Shi Kyoto, Japan
††††Kumamoto National College of Technology, 2659-2 Suya Koshi Kumamoto, Japan

Summary
Various software obfuscation techniques have been
proposed. However, there are few discussions on proper
use of these obfuscations against imaginable threats. An
ad-hoc use of obfuscations cannot guarantee that a
program is sufficiently protected. For a systematic use of
obfuscations and the verification of the result, this paper
proposes a goal oriented approach to obfuscation.
Specifically, we (1) define the capability of an imaginary
cracker, (2) identify the cracker’s goal, (3) conduct a goal-
oriented analysis, (4) select obfuscations to disrupt all sub-
goals, and (5) apply selected obfuscations to the program.
As a case study, we define a security goal and a threat
model for a Java implementation of a cryptomeria cipher
(C2) program, and then, based on the model, we
demonstrate how the goal oriented analysis is conducted
and obfuscation techniques are applied to places where
they are needed.
Key words:
Software Protection, Reverse engineering, Secret Hiding,
Program Analysis

1. Introduction

A variety of confidential information is present in a typical
software product, such as 1) subroutines and algorithms
that are valuable trade secrets and/or related to system
security, e.g. decryption algorithms of digital rights
management (DRM) systems [1]; 2) constant values and
text strings related to system security, e.g. decryption keys
of DRM systems [4][5]; 3) internal function points, e.g.
branching statements for license checking [17]; 4) internal
interfaces, e.g. function call statements to a secure library
module; and 5) external interfaces, e.g. secret “service
entrances” that provide full access to the systems [13].
Many computer systems have been “cracked”, with
serious damages to the producers and/or suppliers of the
systems. For example, secret codes for the CSS
encryption standard for DVD media were revealed in 1999
[28].

In order to hide secrets in software implementation, a
number of obfuscation techniques have been proposed
including lexical obfuscations (e.g., comment removal,
identifier renaming and debugging info removal, etc.) [33],
data obfuscations [7][9][29], and control-flow
obfuscations [6][25][35]. These obfuscation techniques
transform a program so that it becomes more difficult to
understand, yet is functionally equivalent to the original
one [8].

However, there is no systematic method on how to
apply obfuscation techniques appropriately. So, it is
unclear which obfuscation technique should be used. Also,
it is unclear which portion of the program should be
obfuscated, and how much effects of obfuscation can be
expected. These problems are caused because many
obfuscation techniques do not count the purpose and the
target of a cracker enough.

The research objective of this paper is to establish a
goal-oriented analysis framework for proper use of
existing obfuscation techniques. Our key idea is to assume
an imaginary cracker with his/her explicit purpose (goal)
and the target (program), then break the goal down into
pieces, each of which an appropriate obfuscation is
applied to.

The remainder of the paper first describes the status
quo of software obfuscation (Section 2). Next, proposes a
framework for goal-oriented analysis to software
obfuscation (Section 3). Afterwards, we describe a case
study to apply the proposed framework to a practical
cipher program (Section 4); and in the end, summary will
be shown (Section 5).

2. Software Obfuscation Techniques and
Their Problems

From a perspective of selecting proper obfuscation
techniques, we need to consider the type of target to which
each obfuscation technique can be applied. Many
obfuscation techniques are generic ones, i.e. they are

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

60

applicable to any types of programs. One the other hand,
there exist strong but target-specific obfuscations. Below
introduces each type and its problems.

2.1 Generic Obfuscation Techniques

Most obfuscation techniques are generic ones, e.g. control
flow obfuscation [6][25][35], inter-module call relation
obfuscation [26], replacing a high-level instruction with a
set of low-level instructions [20], inserting opaque
predicates [10], transforming data structures [9], renaming
identifiers [33], data obfuscation using homomorphism
[3][27], use of self-modifying code [16], etc. These
obfuscation techniques are focusing on building a
“complex” program rather than preventing a cracker’s
actions to achieve his/her goals. Many of these are light
weight, i.e. applicable to resource-limited environment
because of their small performance penalty.

Unfortunately, it is unclear how effective these
obfuscations are in protecting confidential information
inside a program. It is because “complex” is not equal to
“difficult to crack”. In addition, many of obfuscations do
not assume a clear threat model, a model of cracker’s
behavior to break the security.

2.2 Target Specific Obfuscation Techniques

One of the most powerful obfuscation methods for
protecting cipher software is a white-box cryptography,
which was originally proposed by Chow et al. [4][5] and
now became a hot research topic [12][18]. In this method,
a set of computations using a secret key are replaced with
lookup tables so that the key is hidden inside the tables
and becomes unrecognizable to the cracker.

However, although this method can add strong
protection to a specific cipher program, its application area
is quite limited since it requires a large memory space
(several megabytes) and imposes a serious performance
penalty. Therefore, especially for resource-limited
environments, such as mobile devices, we need an
alternative way to protect cipher programs from crackers.

2.3 Toward Systematic Application of Obfuscation

Since the application area of target specific techniques are
limited, we focus on the light weight, generic obfuscation
techniques to protect any program containing security-
sensitive data. To identify which obfuscation technique to
be employed and which portion of the program to be
obfuscated, we need to clarify an imaginary cracker’s
capability, and also, his/her potential activities of program
analysis, so that we are ready to select a set of obfuscation
techniques to disrupt each potential activity.

3. A Framework for Goal-Oriented Analysis

3.1 Basic Idea

Figure 1 shows a concept of the proposed approach in
contrast to the conventional approach to software
obfuscation. The conventional approach in Figure 1 (a)
takes a program P as an input and conducts a generic
obfuscation O(x) to produce an obfuscated program P’. In
this approach, O(x) should be responsible to protect
secrets included in any given P against any imaginary
crackers; however, such responsibility is not enough
considered in conventional generic obfuscation techniques.
In contrast, the proposed approach in Figure 1 (b) takes
both P and a cracker model as inputs and conduct a goal
oriented analysis to produce a goal tree, which connects a
cracker’s goal with its sub-goals. Then, the proposed
approach applies existing obfuscation techniques
O1(x)…On(x) to proper places in P to disrupt all sub-goals
in the goal tree.

In our previous work, we proposed a cracker-centric
approach to give a guideline for employing existing
obfuscation method to disrupt cracker’s actions [37].
However, the paper did not discuss the systematic
application of obfuscation techniques. Consequently, in
this paper we propose a goal-oriented approach to
systematically protect confidential information in a
program. The key idea is to assume an imaginary cracker
with his/her purpose and target and to break down the goal
into pieces, each of which an appropriate obfuscation is
applied to. To implement the key idea, at first, we
determine a capability of an imaginary cracker. Next, we
identify a cracker’s goal, and conduct a goal oriented
analysis. The goal oriented analysis is to decompose and
to refine the goal into more specific sub-goals and repeat
the decomposition until no sub-goal can be further
decomposed. Finally, we select an obfuscation technique
to prevent understanding for every terminal sub-goal.

Obfuscation
O(x)

Program P

Obfuscated
program P’

(a) Conventional Approach (b) Proposed Approach

Cracker
Model

O1(x)

O2(x)

On(x)

・・
・

Program P

Obfuscated
program P’’

obfuscation
Techniques

Goal Oriented
Analysis

Apply O1(x), …, On(x) to
proper areas in P

Goal Tree

Fig. 1 A concept of the proposed method

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

61

Our goal-oriented approach consists of the following five
steps.

Step1. Define the capability of an imaginary cracker.
Step2. Identify a cracker’s goal.
Step3. Conduct a goal-oriented analysis.
Step4. For every terminal sub-goal, select obfuscation.
Step5. Apply the selected obfuscations to the program.

From next subsection, we describe details of each step.

3.2 Define the Capability of an Imaginary Cracker

When we consider employing a security mechanism to
achieve any security goal, we must define a realistic threat
model, a model of what a cracker is able (and not able) to
do in the real world. For example, a cracker may have an
executable (binary) program and an understanding of the
principles of an algorithm used in the program. Also, it
will be reasonable to assume that the cracker has a static
analyzer such as a disassembler and a decompiler, as well
as a dynamic analyzer (debugger) with “breakpoint”
functionality.

In [24], Monden et al. characterized a cracker’s
knowledge and resources along three dimensions, (1)
understanding level of a protection mechanism being used,
(2) skill level of system observation, and (3) skill level of
system control. These dimensions seem useful for
evaluating any software protection mechanism; however,
in this paper, the dimension (1) is presently out of the
scope since we do not assume any particular protection
method yet. Besides the dimension (1), we need to
characterize the cracker’s knowledge (understanding
level) of a target system.

Based on the discussion above, this paper
characterizes the capability model of an imaginary cracker,
from three dimensions: (A) knowledge, (B) observation
and (C) control. Below describes a skeleton of capability
description for each dimension assuming a very skillful
cracker.
 (A) Knowledge

The cracker has full knowledge of the principles and
external specification of a program.

 (B) System Observation
The cracker owns a binary file, disassembled code
and/or decompiled code of a target program P, as well
as a computer system M in which P is executed. The
cracker has a debugger with breakpoint functionality
that can observe internal states of M, e.g. memory
snapshot of M, audio-visual outputs of M and the input
and output value of P. The cracker also observes the
execution trace of P, i.e. a history of executed opcodes,
operands and their values.

(C) System Control

The cracker operates the keyboard and mouse inputs of
M, as it executes P with an arbitrary input. The cracker
can change the instructions in P as well as the operand
values and the memory image of M in any desired way,
before and/or during running it on M.

Under the capability description above, crackers have
various avenues of attack. They might inspect
disassembled code of P and find a portion of code that
implements a particular part of an algorithm being used in
P. They also might observe a stack memory to find
candidates of a secret data pushed onto the stack memory
during execution [2]. Furthermore, they might collect
multiple execution traces of different inputs, and compares
them to find candidates of a fixed data appeared in
operand values that are insensitive to the inputs [36].

3.3 Identify Cracker’s Goal

In the second step of our analysis, we identify cracker’s
goal. For the given program P, we define a specific goal,
for which the cracker reverse-engineer P.

Here we assume of protecting a typical cipher
program in which DES algorithm was used (Figure 2).
The input of the program is a cipher text sequence, which
is an encrypted digital media content. The output is a clear
text sequence, which is the decrypted audio or video
media.

As shown in Figure 2, DES is a Feistel network-
based block symmetric cipher. Inside the program, the
cipher text is split into left (upper bits) and right (lower
bits). Then, from the secret key K, the key scheduler
generates a round key kn for each decryption round.
Afterwards, the Feistel function de-scrambles the cipher
text using the round key. This step is repeated 16 rounds,
and finally the data is decrypted.

Feistel
Function

K
ey

Sc
he

du
le

r

L16 R16

Round key k16

Secret key K

16
ro

un
ds

 (i
te

ra
tio

ns
)

L15 = R16 R15 = L16 F(R16, k16)

XOR

Input: Cipher text

Output: Clear text

Ri -1 = Li F(Ri, ki)Li -1 = Ri

Fig. 2 Overview of DES algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

62

There are several critical data that must be protected from
crackers in DES program: (1) the secret key K, (2) round
keys k1, …, k16 and (3) secret data table often included in
Feistel function. The cracker’s goal would be to extract
these secret information from the program. For simplicity,
this paper assume extracting (2) round keys as the goal to
explain our idea in the following subsections.

3.4 Conduct a Goal-Oriented Analysis

Given a cracker’s goal, such as “finding round keys”, a
cracker may have several avenues (sub-goals) to achieve
the goal. Also, there would be smaller sub-sub-goals that
need to achieve each sub-goal. In our analysis, we
describe such goal breakdown structure as a goal tree (an
AND-OR graph).

Table 1 describes symbols we use to build a goal tree.
These symbols were typically used in Fault Tree Analysis
(FTA) [34] to decompose a failure into its possible causes.
As shown in Table 1, we have three types of goals: (1)

root goal, (2) intermediate goals and (3) terminal goals.
These goals are connected one another by either an AND
gate or an OR gate. If a goal is connected to lower
(intermediate or terminal) goals by an AND gate, this
means the cracker needs to complete all the lower goals to
achieve higher goal. On the other hand, if a goal is
connected to lower goals by an OR gate, the cracker needs
to complete either one of lower goals. In addition, if the
goal tree grew too large to draw in a limited space,
symbols “transfer in” and “transfer out” could be used to
divide the tree into parts.

 Below describes a basic (top-down) procedure to
build a goal tree:
(1) Set the root goal at the top of a goal tree. Figure 3

describes an example of a goal tree having “find
round keys” as a root goal.

(2) Break the goal down to intermediate goals that a
cracker might find based on Cracker’s Capability
Model defined in Section 3.2. In Figure 3, the goal
“find round keys” is decomposed into two
intermediate goals “Find keys in F-function” and
“Find keys in key scheduler” because round keys
appears in both F-function and the key scheduler.

(3) Connect the relation between identified goals and the
higher goal either by an AND gate or an OR gate. In
case of Figure 3, intermediate goals “Find keys in F-
function” and “Find keys in key scheduler” are
connected to the higher goal by an OR gate.

(4) For each indentified (intermediate) goal, if there
seems no sub-goal that contributes to achieve the
goal, then set the goal as a terminal goal in the tree.
Otherwise. Repeat (2) … (4) until all the leaf goals
become terminal ones.

The procedure described above is a top down approach,
which is a straight forward way to build a goal tree;
however, using the bottom up approach together with the
top down approach would be helpful to build the tree.
Below describes the bottom up approach to supplement
the top down approach.
(1) Identify any clues that the cracker might find in the

target program based on Cracker’s Capability Model.
Here, a clue means a piece of information that might
contribute to achieve the root goal. For example, an
operator “XOR” can be a clue since a lot of XORs
are expected to appear in a DES cipher routine.

(2) Identify abstract clues or intermediate goals that the
cracker might find based on primitive clues identified
in (1). For example, “F-function” can be an abstract
clue because F-function contains a lot of XOR
operators. Since “Locate F-function” is an
intermediate goal identified in the top down approach
(Figure 3), “Finding operator XOR” is connected to
it as a lower goal.

Table1: Goal tree symbols

Root goal
The final goal of a cracker in
attacking the target system.

Intermediate goal
A sub-goal decomposed from the
parent node (root goal or an
intermediate goal.) A cracker
needs to complete intermediate
goals before achieving the root
goal.

Terminal goal
A primitive sub-goal that cannot
be decomposed further.

AND gate
A gate that indicates all lower
goals must be completed to
achieve the higher goal.

OR gate
A gate that indicates either one or
more goals must be completed to
achieve the higher goal.

Transfer in
A transfer node connected to a
“transfer out” node of other goal
tree (child tree).

Transfer out
A transfer node connected to a
“transfer in” node of other goal
tree (parent tree).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

63

3.5 Select an Appropriate Obfuscation

For each terminal goal identified in Section 3.4, we select
an appropriate obfuscation to disrupt the cracker achieving
the terminal goal. Figure 4 shows an example of selecting
obfuscation techniques. In this example, in order to
prevent the cracker from “finding the operator XOR”, we
employ “operator translation obfuscation”. Also, to disrupt
finding a 32 bit integer value, we employ data type
obfuscation (e.g. splitting 32 bit integer variable into four
8 bit variables). Similarly we employ a control flow
obfuscation to hide “16 times loop”.

3.6 Apply Selected Obfuscations

We apply all the obfuscations selected in Section 3.5 to
the target program. As a result all terminal goals become
difficult to achieve, which means all inter-mediate goals
become difficult to achieve. Therefore, the root goal “find
round keys” also becomes difficult to achieve.

4. Case Study

To explain how to apply our approach to an actual
program and to show how it works, this Section introduces
a case study to obfuscate a cipher program typically used
in DRM systems.

4.1 Target Program

Here we assume of protecting a typical DRM program in
which cryptomeria cipher (C2) algorithm was used.
Overview of C2 algorithm is described in Figure 5, and

the source program (written in Java) to be obfuscated is
shown in Figure 8. This algorithm is used in CPPM
(Content Protection for Prerecorded Media) / CPRM
(Content Protection for Recordable Media) scheme [1].

As shown in Figure 5, C2 is a Feistel network-based
block symmetric cipher just like DES. The box “F”
indicates the Feistel function. Figure 6 shows details of the
Feistel function. The major distinction point is that, C2
uses arithmetic addition and subtraction while DES does
not. (This paper assumes that the C2 program does not
contain a key scheduler function because we assume using
ECB cipher mode (which does not require the key
scheduler) and also we wanted to keep the example simple.

4.2 Crackers’ Goal and Capability Model

4.2.1 Knowledge

Since the specification of C2 algorithm is open to public
[1], the cracker’s goal here is to find all round keys in
Figure 8 so that the cracker is able to write his/her own
program that can decrypt existing DRM media contents.

By reading the C2 specification [1], the cracker will
understand the C2 algorithm (Figure 5) and obtains the
following knowledge.
• Round keys ki are either supplied from a key schedule

routine or directly written in P as constant values. In
the former case, there exists a device key K in P, and
K is supplied to the key schedule routine. In the latter
case, both K and the key schedule routine may not
exist in P. In this case, the cracker’s goal is to find all
the round keys (this is the case of this paper.)

• The number of rounds (iterations) is 10. So, there are
10 round keys k1…k10.

Feistel
Function

L10 R10

Round key ki

10
 ro

un
ds

 (i
te

ra
tio

ns
)

－

L9 = R10 R9 = L10 – F(R10, k10)

－ subtraction

Input: Cipher text

Output: Clear text

Ri-1 = Li – F(Ri, ki)Li-1 = Ri

Feistel
Function

L10 R10

Round key ki

10
 ro

un
ds

 (i
te

ra
tio

ns
)

－－

L9 = R10 R9 = L10 – F(R10, k10)

－－ subtraction

Input: Cipher text

Output: Clear text

Ri-1 = Li – F(Ri, ki)Li-1 = Ri

Fig. 5 Overview of C2 algorithm

Operator
Obfuscation

Data Type
Obfuscation

Control Flow
Obfuscation

Find Round
Keys

Find Keys in
F-Function

Find Keys in
Key Scheduler

Locate
F-Function

Find Key
Candidates

Locate
Key Scheduler

Locate
S-box

Find
Operator
“XOR”

Find value
of 32bit
Integer

Find a
loop with
16 times

Fig. 4 Select an appropriate obfuscation

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

64

• The length of each round key is 32 bit.

• The input block size is 64 bit. A block is divided into
L (upper 32 bit) and R (lower 32 bit).

• There is a Feistel function F in P. Either L or R is
input to F in each round.

• There is a subtraction expression right after F.

Similarly, as for the Feistel function F (Figure 6), the
cracker should have the following knowledge.
• Either L or R is added to a round key. This indicates

that there exists in P an “add” opcode that takes two
32 bit operands.

• The result of addition X (32 bit) is divided into four 8
bit blocks x1 … x4. It can be guessed that this division
is done by statements “x1 = (X >>> 24) & 0xff, x2 = (X
>>> 16) & 0xff, x3 = (X >>> 8) & 0xff, x4 = X &
0xff.”

• The lowest 8 bit block x4 is translated by S-box table.
Here, the S-box table is a set of 256 8 bit values. This
indicates there is an array having 256 elements in P.
The translation can be done by a reference to the array,
e.g. “S-box_array[x4].”

• Remaining 3 blocks x1…x3 are XOR’ed with 0xc9,
0x2b, and 0x65, respectively. This indicates there
exist XOR expression and constant values 0xc9, 0x2b
and 0x65 in P. Afterwards, these 3 blocks are rotated
leftward 2 bit, 5 bit, and 1 bit, respectively.

• Then, four blocks are concatenated back to 32 bit
value. This value is then XOR’ed with 9 bit rotated
value and 22 bit rotated value. This indicates there
exist “shift” opcode and constant values 9 and 22 in P.
It can be guessed that the concatenation was done by
an expression “x1 << 24 | x2 << 16 | x3 << 8 | x4.”

4.2.2 Observation and Control

The cracker uses disassemblers and decompilers to
statically analyze the program. Sun Microsystems provides
java disassembler (known as “javap -c” command). Also,
Java disassembler D-Java, which produces jasmin format
assembly code [21] is provided by Meyer [22].
Disassembled code can be re-assembled back to class files
by jasmine assemblers [23][30]. Various java decompilers
are also available although in most cases, they produce
imperfect java source code [32]. The cracker also uses
debuggers, such as jdb, provided by Sun Microsystems,
IDA Pro [14] by Hex-Rays, Omniscient Debugger [15] by
Bil Lewis.

4.3 Goal-Oriented Analysis

We assume that the cracker’s root goal is to “find round
keys” in the C2 program (Figure 8) that needs to be
obfuscated. Based on this root goal, we conducted a goal-
oriented analysis and built a goal tree (Figure 7). Below
describes an example of a top-down approach to build a
goal tree.

There are two potential avenues to achieve the root
goal “find round keys”: one is to “find key candidates in
constants” via static analyses and the other is to “find key
candidates in variables” via dynamic analyses (in addition
to static analysis). These two avenues were set as sub-
goals of the root goal in Figure 7.

To achieve the sub-goal “find key candidates in
constants”, we focus on the characteristics of constants
where the key candidates could be found. Such
characteristics can be considered as “clues” that might
contribute to achieve the goal. As shown in Section 4.2.1,
each key is 32 bit length. Also in the actual program
(Figure 8), key values are assigned to an array sk[] as a set
of 32 bit constants by “int sk[] ={ 0x789ac6ee,
0x79bc3398,…}”. These 32 bit constants could be
identified by disassembling the program, although not all
32 bit constants in the disassembled code are round keys.
Therefore, “find 32bit integers” can be a lower goal of
“find key candidates in constants”. We consider this a
terminal goal, which cannot be decomposed further.

Now we decompose the other avenue “find key
candidates in variables”. There are two areas in the

S-box

L or R Round key ki

0x
65

0x
2b

0x
c9

lro
t1

lro
t5

lro
t2

lrot9 lrot22

+ addition

XOR

+

lrotx left rotate by x bit

Fig. 6 Feistel function of C2

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

65

program where a variable potentially possess a key value:
(1) inputs of F-Function and (2) key manipulation if F-
Function. In the actual program (Figure 8), a key value
hold the variable sk[] is passed to the variable key in the F-
Function. Also, inside the F-Function, the variable key is
used to proceed with the decryption. These avenues could
be discovered by the cracker based on the knowledge
described in Section 4.2.1 and the capability in Section
4.2.2. Therefore, we set two sub-goals “inspect inputs of
F-Function” and “inspect key manipulation in F-Function”
as lower goals of “find key candidates in variables”.

For both sub-goals “inspect inputs of F-Function”
and “inspect key manipulation in F-Function”, the cracker
needs to find the F-Function. Therefore, we set lower goal
“find the Feistel function” in Figure 7.

We consider two types of clues that might contribute
to achieve the goal “find the Feistel function”: (1) clues
related to function calls for F-Function and (2) clues that
comes from the characteristics of F-Function itself. As for
the former clues, “10 times loop” and “SUB operation” are
big clues since F-Function is called 10 times in the C2
algorithm and SUB operation is required right after calling
F-Function as shown in Figure 5. As for the latter clues,
we focus on the distinctive items in the F-Function: (1)
distinctive values, (2) ADD operator, (3) S-box, (4) 32 bit
rotate function, (5) 8 bit rotate function and (6)
concatenate function. When the cracker finds one of these
clues in a certain program area, he/she may think there
might be the F-Function in that area. And, the cracker may
try to find other clues in the same (or neighborhood) area
so that he/she becomes more confident that he/she surely
found the F-Function. Thus, all these clues should be
included in the goal tree so that they are obfuscated in the
later step of our framework.

Further goal decompositions are shown in Figure 7.
For each remaining sub-goal, we inspected the possibility
of further goal decomposition, by thinking of any smaller
actions to achieve the sub-goal, or by thinking of any clues
that might contribute to achieve the sub-goal. If no more
decomposition was available, then we set the goal as a
terminal goal. Finally, 27 sub-goals, including 12
intermediate sub-goals and 15 terminal sub-goals, have
been identified as shown in Figure 7.

4.4 Select an Appropriate Obfuscation

Due to limited space, here we focus on four sub-goals in
the goal tree (labeled “A”, “B”, “C” and “D” in Figure 7)
to be obfuscated.

4.4.1 Obfuscating Distinctive Values

Here we try to disrupt the cracker’s action to achieve the
sub-goal “identify distinctive values 0x65, 0x2b, 0xc9”
(labeled “A” in Figure 7.) This sub-goal contributes to

achieve the upper goal “find Feistel function”, because
constant values 0x65, 0x2b and 0xc9 are expected to
appear in the Feistel function of C2 algorithm (Figure 6).

In Figure 8, a program to be obfuscated, these
constant values appears in the function “public static int
F(int data, int key)”. In this function 0x65 appears in the
statement:

u = (byte)(v[0] ^ 0x65);

To hide 0x65, we split it into two values 0x21 and 0x44,
which satisfy “0x65 = 0x21 XOR 0x44.” By using these
two values we could replace the statement with the
following two statements:

u = (byte)(v[0] ^ 0x21);
u = (byte)(u ^ 0x44);

Similarly, we hid other two constants 0x2b and 0xc9 by
exploiting the relations “0x2b = 0x28 XOR 0x03” and
“0xc9 = 0x41 XOR 0x88.” The resulting obfuscation is
labeled “A” in Figure 9.

4.4.2 Obfuscating 10 Times Loop

Next we try to disrupt achieving the sub-goal “identify 10
times loop” (labeled “B” in Figure 7.) This sub-goal also
contributes to achieve the upper goal “find Feistel
function”, because F-Function is called 10 times in the C2
algorithm (Figure 5). In our example, we simply applied
loop unrolling to remove the 10 times loop (label “B” in
Figure 9).

4.4.3 Obfuscating Concatenate Function

Next we obfuscate the concatenate function (label “C” in
the goal tree of Figure 7). A concatenate function is to
concatenate four 8 bits values into a 32 bits value. The
simplest implementation is t = v[3] << 24 | v[2] << 16 |
v[1] << 8 | v[0] where v is an array contains four 8bit
values, and t is the resultant value. To identify the
concatenate function, a cracker would find clues such as
values 24, 16 and 8, bit shift operator “<<” and OR
operator “|”. Actually, in Figure 8, the target of
obfuscation is implemented as the following statements:

t = (int)v[3] << 24 | (int)v[2] << 16 | (int)v[1] << 8 |
(int)v[0];

To remove bit shift operators “<<”, we used multiplication
instead. The leftward n bit shift can be replaced by
multiplication by 2n. For example, v[3] << 24 can be
replaced by v[3] * 16777216. By this replacement, the
distinctive value “24” is also removed (replaced by
16777216 = 224)

To remove OR operators “|”, we exploited the De
Morgan’s law “P | Q = ~(~P & ~Q)” so that OR is

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

66

replaced by NOT and AND operators. As a result we
obtained:

t = ~(((~((int)v[3] * 16777216) & ~((int)v[2] * 65536)
& ~((int)v[1] * 256)) & ~((int)v[0]));

4.4.4 Obfuscating 32 Bit Integers

Next we obfuscate 32 bit integers, which implement round
keys (label “D” in Figure 7). The cracker would try the
brute force attack and monitor every 32 bit value
appearing in the assembly code or in the stack [2] to find
the round key. To protect the key from the attack, the key
value must be transformed.

In Figure 9 (label “D”), a homomorphic
transformation by a linear function [29] was applied to key
values sk[].This method transforms each data by a linear
function (we used f(x) = 4x + 3.) By this transformation, a
key 0x789ac6ee was encoded as 0x3ffb81617L (= 4 *
0x789ac6ee + 3). This encoded key is then used in the
Feistel function in the statement:

 t = data + key;

To compute with the encoded key, the statement “t = data
+ key” is replaced with “t = data * 4 + key” so that
resultant value t holds an encoded value. In the later, when
clear text of t is required, we compute inverse
transformation f -1(x) = (x - 3) / 4 so that t becomes non
encoded value. The resultant program is shown in Figure 9.

Important things here is that, during the above
computation, the original key value 0x789ac6ee appears
neither in constants, variables nor the stack. Instead of
using linear encoding, we could also consider using
residue encoding, bit exploded encoding [7], secret
sharing homomorphism [3][27], variable merging [11] and
the use of error collecting code [19] to hide the key value.

After transforming keys by a homomorphic
transformation or by other techniques, transformed keys
should be implemented as a set of smaller (e.g. 8bit) sub
keys so that it becomes more difficult to find key
candidates for the cracker.

4.5 Hiding Obfuscation

After all obfuscations were applied, i.e. all the paths from
leafs to the root of the goal tree were blocked by
obfuscations, we need to carefully inspect the obfuscated
program if there exists any clue to discover the secret.

Since obfuscation methods themselves have
distinctive features, we need to hide them so that the
cracker can not recognize which obfuscation method is
being used. For example, if we employ residue encoding
[7] to hide round keys, a lot of modulo opcodes will be
introduced in the obfuscated program. In this case, we
need to write our own (obfuscated) modulo routines
instead of simply using module opcodes.

5. Summary

This paper proposed a goal-oriented framework of
applying existing obfuscation techniques to hide any
secret in a program. This paper also demonstrated how the
proposed framework could be applied to a cipher program
through a case study with C2 cipher.

Our future work is to evaluate the proposed
framework with other programs and to develop a guideline
for building a goal tree and for selecting appropriate
obfuscations.

Acknowledgments

The work was partially supported by the Ministry of
Education, Culture, Sports, Science and Technology
(MEXT), Grant-in-Aid for Scientific Research (C),
19500056 and Grant-in-Aid for Young Scientists (B),
18700062.

References
[1] 4C Entity, “CPRM Common Cryptographic Functions” in

Content protection for recordable media specification –
Introduction and common cryptographic elements rev. 1.01,
pp. 15-18, May. 2007.

[2] K. Akai, M. Misawa, and T. Matsumoto, “Evaluating
tamper resistance by searching runtime data,” IPSJ Journal,
Vol.43, No.8, pp.2447-2457, Aug. 2002. (in Japanese).

[3] J. C. Benaloh, “Secret sharing homomorphisms: keeping
shares of a secret,” Proc. Advanced in Cryptology, pp. 251-
260, 1987.

[4] S. Chow, P. Eisen, H. Johnson, and P. van Oorschot, “A
white-box DES implementation for DRM applications,”
Proc. 2nd ACM Workshop on Digital Rights Management
(DRM2002), Lecture Notes in Computer Science, Vol.
2696, pp. 1-15, 2003.

[5] S. Chow, P. Eisen, H. Johnson and P. van Oorschot,
“White-box cryptography and an AES implementation,”
Proc. 9th International Workshop on Selected Areas in
Cryptography (SAC2002), Lecture Notes in Computer
Science, Vol. 2595, pp. 250-270, 2003.

[6] S. Chow, H. Johnson, and Y. Gu, “Tamper resistant
control-flow encoding,” United States Patent 6,779,114,
Filed 19 Aug. 1999, Issued 17 Aug. 2004.

[7] S. Chow, H. Johnson, and Y. Gu, “Tamper resistant
software encoding,” United States Patent 6,594,761, Filed
9 June 1999, Issued 15 Jul. 2003.

[8] C. Collberg, and C. Thomborson, “Watermarking, tamper-
proofing, and obfuscation – Tools for software protection,”
IEEE Trans. on Software Engineering, Vol. 28, No. 8, pp.
735-746, 2002.

[9] C. Collberg, and C. Thomborson, D. Low, “Breaking
abstractions and unstructuring data structures”, Proc. IEEE
International Conference on Computer Languages
(ICCL98), pp. 28-38, May 1998.

[10] C. Collberg, C. Thomborson, and D. Low, “Manufacturing
cheap, resilient, and stealthy opaque constructs,” Proc.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

67

ACM Symposium on Principles of Programming
Languages (POPL98), Jan. 1998.

[11] C. Collberg, C. Thomborson, and D. Low, “Obfuscation
techniques for enhancing software security,” United Sates
Patent 6,668,325, Assignee: InterTrust Inc., Filed 9 June
1998, Issued 23 Dec. 2003.

[12] M. Jacob, D. Boneh, and E. Felten, “Attacking an
obfuscated cipher by injecting faults,” ACM Workshop on
Digital Rights Management, Lecture Notes in Computer
Science, Vol. 2696, pp. 16-31, 2003.

[13] J. Havrilla, “Borland/Inprise Interbase SQL database server
contains backdoor superuser account with known pass-
word,” US-CERT, Vulnerability Note VU#247371, Revi-
sion 46, https://www.kb.cert.org/vuls/id/247371, 1 Dec.
2001.

[14] IDA Pro: Disassembler and Debugger,
http://www.hex-rays.com/idapro/

[15] Bil Lewis, Omniscient Debugger:
http://www.lambdacs.com/debugger/

[16] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto,
“Exploiting self-modification mechanism for program
protection,” Proc. 27th IEEE Computer Software and
Applications Conference, pp. 170–179, Nov. 2003.

[17] M. LaDue, “The Maginot license: Failed approaches to
licensing Java software over the Internet,” http://
www.geocities.com/securejavaapplets/maginot.html, 1997.

[18] H. E. Link, and W. D. Neumann, “Clarifying obfuscation:
improving the security of white-box encoding,” Cryptology
ePrint Archive, Report 2004/025, International Association
for Cryptologic Research, 2004.

[19] S. Loureiro, and R. Molva, “Function hiding based on error
correcting codes,” Proc. International Workshop on
Cryptographic Techniques and Electronic Commerce
(CRYPTEC99), pp. 92-98, July 1999.

[20] M. Mambo, T. Murayama, and E. Okamoto, “A tentative
approach to constructing tamper-resistant software,” Proc.
1997 New Security Paradigm Workshop, pp. 23–33, Sep.
1997.

[21] J. Meyer and T. Downing, “Java Virtual Machine,”
O’Reilly & Associates, Inc., 1997.

[22] J. Meyer, “D-Java,” http://mrl.nyu.edu/~meyer/jvm/djava/
[23] J. Meyer, “Jasmin Home Page,”

http://jasmin.sourceforge.net/
[24] A. Monden, A. Monsifrot, and C. Thomborson, “Tamper-

resistant software system based on a finite state machine,”
IEICE Trans. on Fundamentals, Vol.E88-A, No.1, pp.112-
122, Jan. 2005.

[25] A. Monden, Y. Takada, and K. Torii, “Methods for
scrambling programs containing loops,” Trans. of IEICE,
Vol.J80-D-I, No.7, pp.644-652, July 1997. (in Japanese).

[26] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, “Software
obfuscation on a theoretical basis and its implementation,”
IEICE Trans. Fundamentals, Vol.E86-A, No.1, pp.176-186,
2003.

[27] J. Patarin, and L. Goubin, “Secret key cryptographic
process for protecting a computer system against attacks by
physical analysis,” United States Patent 6,658,569, Filed
17 June 1999, Issued 2 Dec. 2003.

[28] A. Patrizio, “Why the DVD hack was a cinch,” Wired
News, Nov. 1999,

http://www.wired.com/science/discoveries/news/1999/11/3
2263

[29] T. Sander, and C. Tschudin, “Protecting mobile agents
from malicious hosts,” Mobile Agents and Security,
Lecture Notes in Computer Science, Vol. 1419, pp. 44-60,
1998.

[30] Soot: A Java optimization framework,
http://www.sable.mcgill.ca/soot/

[31] H. Tamada, “AddTracer, Injecting tracers into Java class
files for dynamic analysis,” http://se.naist.jp/addtracer/

[32] The decompilation Wiki of Program-Transformation.Org,
http://www.program-
transformation.org/Transform/DeCompilation

[33] P. M. Tyma, “Method for renaming identifiers of a
computer program,” United States Patent 6,102,966,
Assignee: PreEmptive Solutions, Inc., Aug. 2000.

[34] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F.
Haasl: Fault Tree Handbook, Tech. Rep. NUREG-0492,
U.S. Nuclear Regulatory Commission, 1981.

[35] C. Wang, J. Hill, J. Knight, and J. Davidson, “Protection of
software-based survivability mechanisms,” Proc.
International Conference of Dependable Systems and
Networks, pp. 193-202, July 2001.

[36] H. Yamauchi, “The evaluation for tamper-resistance of
programs based on the instruction sequence differential
attack,” Master’s Thesis, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-
IS-MT0351135, Feb. 2005 (in Japanese).

[37] H. Yamauchi, Y. Kanzaki, A. Monden, M. Nakamura, and
K. Matsumoto, “Software Obfuscation from Crackers’
Viewpoint,” Proc. the IASTED International Conference
on Advances in Computer Science and Technology, pp.
286-291, Jan. 2006.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

68

Hiroki Yamauchi received the B.E.
degree in Electrical Engineering from
Doshisha University in 2003, M.E. degree
in Information Science Engineering from
Nara Institute of Science and Technology
of Technology in 2005. He is currently a
PhD candidate in Graduate School of
Information Science, Nara Institute of
Science and Technology, Japan. His
research interests include software security

and software requirement. He is a student member of IEEE and
IPSJ.

Akito Monden received the BE degree
(1994) in Electrical Engineering from
Nagoya University, Japan, and the ME
degree (1996) and DE degree (1998) in
Information Science from Nara Institute of
Science and Technology, Japan. He was
honorary research fellow at the University
of Auckland, New Zealand, from June
2003 to March 2004. He is currently
Associate Professor at Nara Institute of

Science and Technology. His research interests include software
security, software measurement, and human computer interaction.
He is a member of the IEEE, ACM, IEICE, IPSJ, JSSST and
JSiSE.

Masahide Nakamura received the B.E.,
M.E., and Ph.D. degrees in Information
and Computer Sciences from Osaka
University, Japan, in 1994, 1996, 1999,
respectively. From 1999 to 2000, he has
been a post-doctoral fellow in SITE at
University of Ottawa, Canada. He joined
Cybermedia Center at Osaka University
from 2000 to 2002. From 2002 to 2007, he
worked for the Graduate School of

Information Science at Nara Institute of Science and Technology,
Japan. He is currently an associate professor in the Graduate
School of Engineering at Kobe University. His research interests
include the service-oriented architecture, Web services, the
feature interaction problem, V&V techniques and software
security. He is a member of IEEE and IEICE.

Haruaki Tamada received the BE and
ME in Information and Communication
Engineering from Kyoto Sangyo
University, Japan in 1999, 2001. He
received DE degree in Information
Science from Nara Institute of Science and
Technology, Japan in 2006. From 2006 to
2008, he worked for the Graduate School
of Information Science at Nara Institute of

Science and Technology, Japan. He is currently an assistant
professor in Faculty of Computer Science and Engineering,
Kyoto Sangyo University, Japan. His research interests include

software security, software measurement. He is a member of the
IEICE, IPSJ and IEEE.

Yuichiro Kanzaki received the B.E.
degree in computer and systems
engineering from Kobe University, Japan
in 2001, and the M.E. degree in
Information Science engineering from
Nara Institute of Science and Technology
in 2003, He received DE degree in
Information Science from Nara Institute of
Science and Technology, Japan in 2006.

He is currently an assistant professor in Department of
Information and Computer Sciences, Kumamoto National
College of Technology, Japan. His research interests include
software protection, software process security and program
comprehension. He is a member of the IEICE, IPSJ and IEEE.

Ken-ichi Matsumoto received the B.E.,
M.E., and PhD degrees in Information and
Computer sciences from Osaka University,
Japan, in 1985, 1987, 1990, respectivery.
Dr. Matsumoto is currently a professor in
the Graduate School of Information
Science at Nara Institute Science and
Technology, Japan. His research interests
include software measurement and

software process. He is a senior member of the IEEE, and a
member of the ACM and IPSJ.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

69

B

D

C
A

C

Fig. 7 Goal tree of C2 cipher

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

70

/* C2 decryption in ECB (Electronic Code Book)
mode: */
public static void c2_d(int inout[]) {
int L, R, t, round, i;
int ktmpa, ktmpb, ktmpc, ktmpd;

/* Round Keys */
int sk[] ={

0x789ac6ee, 0x79bc3398,
0x48d15d62, 0xb3c4da86,
0xabcde483, 0xc248048f,
0xfda00b6f, 0xfd600e69,
0xfe140e66, 0xffee0585

};

/* Input Conversion */
L = inout[0]; R = inout[1];

for(round=MaxRound-1;round>=0;round--) {
/* Feistel network */

L -= F(R, sk[round]);
t = L; L = R; R = t; // swap

}
t = L; L = R; R = t; // swap cancel

/* Output */
inout[0] = L; inout[1] = R;
return;

}

/* F is the Feistel round function: */
public static int F(int data, int key) {
int t;
byte v[] = new byte[4];
byte u;

/* Key Insersion */
t = data + key;

/* Secret Constant */
v[3] = (byte)((t >>> 24) & 0xff);
v[2] = (byte)((t >>> 16) & 0xff);
v[1] = (byte)((t >>> 8) & 0xff);
v[0] = SecretConstant[t&0xff];

u = (byte)((v[0]&0xff) ^ 0x65);
v[1] ^= lrot8((u&0xff), 1);

u = (byte)((v[0]&0xff) ^ 0x2b);
v[2] ^= lrot8((u&0xff), 5);

u = (byte)((v[0]&0xff) ^ 0xc9);
v[3] ^= lrot8((u&0xff), 2);

/* Concatenate & Rotate */
t = (int)v[3] << 24 | (int)v[2] << 16 |

(int)v[1] << 8 | (int)v[0];
t ^= lrot32(t,9) ^ lrot32(t,22);
return t;

}

/* Logical left rotate */
public static byte lrot8(int x, int n) {

return (byte)((x << n) | (x >>> (8-n)));
}

public static int lrot32(int x, int n) {
return ((x << n) | (x >>> (32-n)));

}

C

A

B

D

Fig. 8 Source code of C2 cipher (before obfuscation)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

71

/* C2 decryption in ECB (Electronic Code
Book) mode: */
public static void c2_d(int inout[]) {
int L, R, t;

/* Round Keys */
long enc_key[] ={

0x3ffb81617L, 0x3f850399bL,
0x3f58039a7L, 0x3f6802dbfL,
0x30920123fL, 0x2af37920fL,
0x2cf136a1bL, 0x12345758bL,
0x1e6f0ce63L, 0x1e26b1bbbL

};

/* Input Conversion */
L = inout[0]; R = inout[1];

L -= foo(R, enc_key[0]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[1]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[2]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[3]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[4]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[5]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[6]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[7]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[8]);
t = L; L = R; R = t; // swap

L -= foo(R, enc_key[9]);

/* Output */
inout[0] = L; inout[1] = R;
return;

}

/* foo is the Feistel round function: */
public static int foo(int data, long enc_key) {
long t, t2, t3;

int tt;
byte v[] = new byte[4];
byte u;

/* Key Insersion */
t = data * 4 + enc_key ;

/* Secret Constant */
t = (t - 3) / 4;

t3 = t / 256; t3 /= 256; t3 /= 256;
t2 = t / 256; t2 /= 256;

v[3] = (byte)(t3&0xff);
v[2] = (byte)(t2&0xff);
v[1] = (byte)((t/256)&0xff);
v[0] = SecretConstant[(int)t&0xff];

u = (byte)(v[0] ^ 0x21);
u = (byte)(u ^ 0x44);

v[1] ^= lrot8(u,1);
u = (byte)(v[0] ^ 0x28);
u = (byte)(u ^ 0x03);

v[2] ^= lrot8(u,5);
u = (byte)(v[0] ^ 0x41);
u = (byte)(u ^ 0x88);

v[3] ^= lrot8(u,2);

/* Concatenation & Rotation */
tt = ~((~((int)v[3] * 16777216) & ~((int)v[2]

* 65536)) & (~((int)v[1] * 256) & ~((int)v[0])));
tt ^= lrot32(tt,9) ^ lrot32(tt,22);
return tt;

}

/* Logical left rotate */
public static byte lrot8(int x, int n) {

return (byte)((x << n) | (x >>> (8-n)));
}

public static int lrot32(int x, int n) {
return ((x << n) | (x >>> (32-n)));

}

B

C

D

D

A

Fig. 9 Source code of C2 cipher (after obfuscation)

