2008 IEEE International Conference on Services Computing

Implementing Multi-Vendor Home Network System with
Vendor-Neutral Services and Dynamic Service Binding

Masahide Nakamura', Yusuke Fukuoka?, Hiroshi Igaki' and Ken-ichi Matsumoto?
! Graduate School of Engineering, Kobe University
1-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-0013, Japan
{masa-n, igaki}e@cs.kobe-u.ac.jp
2 Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0101, Japan
{yuusuke-f, matumoto}@is.naist.jp

Abstract

The home network system (HNS) consists of networked
household appliances, intended to provide value-added ser-
vices. The conventional HNS has been built on the single-
vendor system, which severely limits potential of the HNS.

To overcome the problem, this paper presents a method
that constructs the HNS with multi-vendor appliances. The
proposed method first defines vendor-neutral standard ser-
vices, with which various HNS applications and services
are developed. Then, we exploit a dynamic service binding
mechanism, which binds each standard service on a vendor-
specific API of an appliance during run-time. With this
mechanism, common HNS applications and services can
be achieved by various combinations of multi-vendor ap-
pliances. Moreover, replacing any appliance with another
never affects the execution of the applications.

We have implemented the proposed method using Apache
Axis Web services and Rhino JavaScript engine. The exper-
imental evaluation showed that our implementation works
well for a practical HNS with sufficiently small overhead.

1. Introduction

Research and development of home network systems
(HNS, for short) are recently a hot topic in the area of ubiq-
uitous/pervasive computing. In the HNS, general house-
hold appliances such as TVs, DVD players, lights, air-
conditioners, refrigerators, ventilators, curtains and sensors,
are connected to a network at home. These networked ap-
pliances are controlled, monitored, and even orchestrated
via the network, to provide sophisticated applications and
value-added services for home users [6]. Several HNS prod-
ucts are already on the market (e.g., [S][10][11] [18]).

Due to lack of the programmatic interoperability [8] and

978-0-7695-3283-7/08 $25.00 © 2008 IEEE
DOI 10.1109/SCC.2008.148

275

the static system architecture, the current HNS is the single-
vendor system, where all appliances and applications are
manufactured by the same vendor. The single-vendor sys-
tem limits the end-users to choose their favorite appliances.
It also makes third-party service providers difficult to join
the business. These limitations become major obstacles for
popularizing the HNS for general home. The next chal-
lenge for the industries is to achieve the multi-vendor HNS,
where various HNS applications works for any combination
of multi-vendor appliances. However, sharing the same API
specifications among all appliance vendors is quite difficult
due to technical and political reasons.

This paper presents a method that constructs the HNS
with multi-vendor networked appliances. Our key idea is to
introduce standard services in the middle of the HNS appli-
cations and the appliances. The standard service provides
vendor-neutral service interfaces for the HNS applications
in the upper layer, encapsulating vendor-specific appliance
APIs. Also, the standard service implements dynamic ser-
vice binding mechanism, which binds the standard services
to the concrete appliances during runtime. The binding can
be changed flexibly just by updating the binding definition.
With this mechanism, common HNS applications and ser-
vices can be achieved by various combinations of multi-
vendor appliances. Moreover, replacing any appliance with
another never affects the execution of the applications. In
the proposed framework, the standard services can be im-
plemented and provided even by third-party providers. Also
the architecture accepts a wide range of multi-vendor appli-
ances, which allows end-users to have their favorite appli-
ances and vendors.

Based on the proposed method, we have implemented
a multi-vendor HNS platform, called Verbena. Verbena
achieves the dynamic service bindings and the vendor-
neutral services, using JavaScript and Web service tech-

IEEE
computer
® psouety

nologies. We have deployed Verbena in the practical HNS
proposed in our previous work [13][14]. The experimental
evaluation showed that the proposed method works well for
a practical HNS with sufficiently small overhead.

2. Preliminaries
2.1. Home Network System

As illustrated in Figure 1, a HNS consists of networked
home appliances and a home server, connected to LAN at
home. Each appliance typically has a set of control APIs,
with which the user or external software agents can con-
trol the appliance. The home server works as an application
server, which manages various value-added services. It also
plays a role of the gateway to the external network. Every
HNS service is implemented as a software application (we
call HNS application) that invokes the appliance APIs ac-
cording to a certain service logic. The following shows a
typical example of the HNS applications.

Theater Service: Orchestrating a light, a curtain, and a
TV, this service allows the user to watch the TV in a theater-
like setting. When the user requests the service, the light
becomes dark, the curtain is closed, and the TV is turned on
in the theater-surround setting, automatically.

As for the APIs, there are several granularity levels. For
instance, APIs at the network layer may manage the net-
work capability of the appliance, including address setup,
message and signal formats, protocols. For this, many
HNS protocols are being standardized (e.g., DLNAJ2],
UPnP[19], ECHONET]I3], X10, HomePlug). Such APIs are
at quite low level that we don’t focus in this paper.

On the other hand, APIs at the application layer (or
higher) provide easy access to logical features of the ap-
pliance, encapsulating the underlying middleware or net-
work protocol. For instance, APIs for a light may involve
on(), off (), and setBrightness (int level). Such
APIs are often developped by individual appliance vendors,
and are deployed in a service-oriented way so that the exter-
nal applications can easily use the appliance features. The
well-known OSGi framework [16] is for implementing such
service-level APIs. There also exists research work apply-
ing Web services to deploying the APIs [9][13].

In this paper, we refer the APIs to the ones at the appli-
cation layer, not the ones at the network layer.

2.2. Limitations in Single-Vendor HNS

Due to lack of programmatic interoperability [8] (i.e., in-
teroperability at the application level), most of the current

276

Air-

Ventilator Fire/Gas Conditioner

HNS Apps/
—|Services

" Window/

Speakers
Curtain

External Network

HNS Application| TheaterService_for_A
Static Binding @
A — |

Single-Vendor / ‘ \
Appliances

Curtain_A
(@)

Light_A

Light_B

Curtain_B
(b)

TV_B

Figure 2. Conventional HNS architecture

HNS (e.g., [5] [10] [11] [18]) are comprised of the single-
vendor system. When appliances and their APIs are devel-
oped by a vendor, HNS applications that uses the APIs are
developed also by the same vendor. !

Figure 2(a) shows a typical architecture of the conven-
tional HNS, where the Theater Service is implemented
with appliances from Vendor A. In the figure, it is seen
that Theater_Service A operates Light A, Curtain A,
TV_A in this order via APIs, to achieve the service require-
ment. Figure 2(b) shows the same service implemented
by different Vendor B. Note that the implementation of
Theater_Service B is completely different from that of
Theater_Service A, since the specification of the APIs
are different between Vendors A and B. Thus, it is basi-
cally impossible to mix different vendor’s appliances with-
out re-implementing the HNS applications. Even among
the single-vendor appliances, the version of the APIs must
be managed carefully, since any changes in APIs results in
malfunction of the existing applications.

The current HNS based on the single-vendor system
poses significant limitations in popularizing HNS products
to the general home. From the technical viewpoint, it is dif-
ficult to replace the existing appliances by the ones with dif-
ferent API specifications. Also, combinations of compatible
appliances are quite limited, because of the version consis-
tency problem. From the business viewpoint, it is hard for
third-party service providers to participate in the HNS busi-
ness. From the end-user’s viewpoint, there is little room for
users to select appliances and vendors of their own choice.

ISome HNSs allow to use a few compatible appliances (hardware) de-
veloped by other vendors. However, controllers (including APIs) attached
to the hardware are single-vendor products.

2.3. Assumptions

A straight-forward solution to achieve the multi-vendor
HNS is to standardize the API specification shared by all
vendors. Unfortunately however, this approach is not re-
alistic due to both political and technical reasons. Every
vendor in the alliance wants to take the initiative to deter-
mine the specification, so as to make full use of the own
technologies. Also, a strict specification at the application
level would make the appliances uniform, which makes it
difficult for every vendor to differentiate the own product
from other vendor’s products in the market. Thus, it is quite
hard to reach an ideal specification, where all vendors are
well convinced.

Based on the discussion, we impose the following as-
sumptions to make our problem setting clearer.

Assumption Al: For every appliance, the vendor of the ap-
pliance determines API specifications, arbitrarily.

Assumption A2: The APIis implemented by the appliance
vendor, and is bundled with the appliance.

Assumption A3: The API specification is opened to the
consumers, including the third-party service provider.

3. Proposed Method
3.1. Requirements

Our goal is to establish a solid framework for achieving
the multi-vendor HNS, where all of the following require-
ments are satisfied.

Requirement R1: The framework must enable the HNS to
accept a wide range of multi-vendor appliances.

Requirement R2: The framework must allow every ap-
pliance to be replaced with another, without re-
constructing HNS applications or re-deploying HNS
platforms.

Requirement R3: The framework must allow third-party
service providers to develop HNS applications and
platforms.

Requirement R1 allows the HNS to have flexible com-
binations of multi-vendor appliances. In general, combina-
tions of favorite appliances and vendors vary from house to
house. Therefore, achieving Requirement R1 significantly
enhances applicability of the HNS to various homes. Re-
quirement R2 says that the framework should be tolerant
for dynamic replacements of appliances. Every appliance
has a possibility to be replaced as the consumer buys new
one. Moreover, some mobile appliances could be connected

271

HNS TheaterService

Application

Binding Definition

— o

(Tight) — CLight B}
(Curtain) —= <Gurtain
IV)—¢1v.B"

Lookupé&|
Create

Standard i Light h i Curtain h i TV hPrOXV'

Services Proxy Proxy Proxy

Static Binding

<4
Interpret

K 13
y_uE—3

Adapters

=
Dynamic Binding :

i

Multi-Vendor
Appliances

Light_B

Curtain_A TV_B

Figure 3. Proposed HNS architecture

or disconnected to the HNS, dynamically. Requirement R3
makes competitive third-parties in the HNS business, which
would lead to many new services, quality improvement and
cost reduction.

3.2. Overview

The problem in the conventional HNS architecture (see
Figure 2) is that the HNS applications and appliances are
statically coupled with vendor-specific APIs. In order to
achieve the multi-vendor HNS, it is therefore essential to
weaken the coupling between applications and appliances.

Our key idea is to exploit an additional service layer,
called standard service, in the middle of applications and
every appliance. Figure 3 shows the overview of the pro-
posed architecture, where the Theater Service is imple-
mented by multi-vendor appliances. Our standard services
are implemented based on the following design thought:

(A) Vendor-Neutral Service Interfaces

According to Assumption Al, specifications of appliance
APIs vary from vendor to vendor. To achieve Require-
ment R1 for such heterogeneous APIs, every standard ser-
vice should provide a vender-neutral service interface for
the HNS applications, with encapsulating the underlying
vendor-specific APIs. We assume that the service interfaces
are determined arbitrarily by the service provider (but not
appliance vendors).

(B) Dynamic Service Binding Mechanism

Since every standard service is an abstract model of an ap-
pliance, we then have to bind the service to the concrete
appliance actually deployed in the HNS. For this, we need
to translate the vendor-neutral service interfaces into the
vendor-specific appliance APIs. According to Assumptions
A2 and A3, the service provider can prepare an adapter for
every appliance, which describes how to invoke the API for
the appliance. As shown in Figure 3, each standard service

Table 1. Responsible stakeholders

Components Conventional Proposed
Appliances Appliance Vendor ~ Appliance Vendor
Appliance APIs Appliance Vendor ~ Appliance Vendor
HNS Applications Service Provider

Appliance Vendor
_ Service Provider
Service Provider
Home Users

Standard Services
Adapters
Binding Definitions

implements a dynamic proxy, which interprets an appropri-
ate adapter during runtime, according to the user-defined
binding definition. Owing to such dynamic service binding,
Requirement R2 will be achieved.

Note, in the proposed architecture, that the standard
services and the HNS applications can be developed by
any service provider, which can be independent of spe-
cific appliances or vendors. Thus, Requirement R3 can be
achieved. Table 1 compares the previous and the proposed
architectures, with respect to who is responsible for each
component of the HNS.

3.3. Vendor-Neutral Service Interfaces

Designing good interfaces for the standard services is
important for the HNS service provider. We present a guide-
line on how to determine the vender-neutral service inter-
faces. The proposed guideline consists of two steps.

3.3.1 Step 1: Determining Target Features

Not only the API specifications, but also the features of the
appliances varies from vendor to vendor. Therefore, for
each kind of appliance, we first determine target features,
which should be provided by the standard service. For this,
we propose to choose features satisfying the following two
conditions: (a) commonly equipped by almost all vendor’s
appliances and (b) frequently used in the daily life.

For example, Table 2 represents features of digital TV
products from five major Japanese vendors. Each entry
shows whether the product has the feature (v') or not (-).
From this table, we can see that the following ten features
are commonly included by all vendors’ products: Power
On/Off, Change Sound Volume, Mute, Switch Sub-channel,
Change Channel, Display Channel, Select Input, Off Timer,
Channel Configuration, Picture Configuration. Any other
features are equipped by only specific vendors, so choos-
ing them as the target features yields the vendor-dependent
problems in the standard service.

Among the ten features, Channel Configuration and Pic-
ture Configuration are not frequently used, once the TV has
been successfully configured on its deployment. Hence,
there is little benefit to exhibit them for the HNS applica-
tions. As a result, we choose the following eight features as

278

Table 2. Features of digital TVs from different
vendors (partly shown)

Features VendorA VendorB ~ VendorC ~ VendorD VendorE
Power On/Off v v v v v
Change Sound Volume v v v v v
Mute v v ' v v
Switch Sub-Channel v v v v v
Change Channel v v v v v
Display Channel v v v v v
Select Input v v v v v
Broadcast Satellite Tuner - v - v
Off Timer v v v v v
On Timer v - - -
Power Energy Saving - v v -
Sensor Energy Saving - v -
Subtitle v v v
TV Program - v v
Program Info. - v v
Channel Configuration v v v v v
Picture Configuration v v v v v
Clock Configuration v v -

the target features in this example: Power On/Off, Change
Sound Volume, Mute, Switch Sub-channel, Change Chan-
nel, Display Channel, Select Input, Off Timer.

3.3.2 Step 2: Defining Service Interface

We then define service interfaces to operate the target fea-
tures determined in Step 1. Based on the characteristic of
each operation, we define a method signature. A reasonable
way for the definition is as follows. For every fixed opera-
tion of the feature, we define a method that returns an error
code. For every operation that requires explicit input values
or the one that switches the mode with several values, we
define a method taking parameters. Note that the seman-
tics of the parameter values should be determined carefully
in a vendor-neutral manner. It is also convenient to define
interface for obtaining appliance status (getStatus ()).

Figure 4 shows Java-like pseudo code defining the in-
terface for a standard TV service. The method signatures
have been derived from the eight target features in the Dig-
ital TV example. Each method corresponds to an operation
of a target feature. Some methods takes parameters, whose
semantics are written in the adjunct comment lines.

Note that the parameter semantics are also vendor-
neutral. For instance, changeVolume () takes a parameter
vol, ranging from O to 100, to specify the desired sound
volume as the percentage to the maximum sound level.
Generally, the definition of sound level varies among differ-
ent vendors. For instance, let 7'V 4 and TV be TVs from
different vendors, whose maximum sound levels are 30 and
50, respectively. The specification of changevVolume ()
works well for both TV4 and TVg. When TV, is de-
ployed in the HNS, invocation of changeVolume (20) is
interpreted as “set sound level of 7'V 4 to be 6 (=30%20%)”.
When T'Vp is deployed, it is interpreted as “set sound level

interface TVServiceIF

/* Each method returns error code (0 for success) =/
int on();

int off () ;

int changeVolume (int vol); // vol: 0..100 (in %)

int mute() ;

int unmute () ;

int subChannel (int mode); /% mode: 0 (Main), 1 (Sub)

2 (Main+Sub) */

int changeChannel (int ch); // ch: (Chanel Number)
int displayChannel () ;

int unDisplayChannel () ;

int selectInput (int line); // line: (Line Number)

int setOffTimer (int hour); // hour: Hour to shutdown
int cancelOffTimer () ;
TVStatus getStatus() ; // returns TV status

Figure 4. Interface for standard TV service

of T'Vp to be 10 (=50%20%)”. Such translation of the pa-
rameter semantics will be actually performed in the service
adaptor, which is introduced in the next section.

3.4. Dynamic Service Binding Mechanism

In order for HNS application to operate the multi-vendor
appliances via the standard services, we implement the dy-
namic service binding mechanism in the standard service.
To do this, we introduce the following three components.

3.4.1 Binding Definition

The binding definition defines a mapping from each stan-
dard service to a concrete appliance actually deployed in the
HNS. In general, different houses can have different combi-
nations of multi-vendor appliances. So, we suppose that the
binding definition is generated for each home and is saved
as an external file of the HNS platform. The file is updated
when any appliance is installed or uninstalled.

Figure 5 shows an example of the binding definition for
an instance of HNS. The standard services for the light, the
curtain, and the TV are respectively mapped to Light_B,
Curtain A and TV_B, as shown in Figure 3.

3.4.2 Service Adapter

The service adapter describes how to invoke the appliance
APIs when each vendor-neutral method is called. The
adapter is assumed to be prepared by the service provider
for every multi-vendor appliance. According to Assump-
tion A3, the service provider knows the specification of the
appliance APIs. Hence, the provider can implement the
logic of each service interface by using the appliance APIs.
Due to the derivation method of the service interfaces (see
Section 3.3), for each method in the standard service, there
must exist an appropriate API of every concrete appliance.

279

binddef NakamuraHNS {
LightService -> Light_Bj;
CurtainService -> Curtain_A;
TVService -> TV_B;

Figure 5. Example of binding definition

adapter TVAdapter B implements TVServiceIF {
TVAPI_B tvB = new TVAPI_B(); //use APIs for TV_B
int on() {
ret = tvB.setPower (true) ;
return ret;
}
int off () {
ret = tvB.setPower (false);
return ret;

changeVolume (int vol) {

int maxLevel = 50;

//Translate parameter semantics
int v = maxLevel % vol * 0.01;
ret = tvB.setVolume (v) ;

return ret;

int

Figure 6. Example of service adapter

Figure 6 shows a Java-like pseudo code for the ser-
vice adapter, which adapts Tv_B to the standard TV ser-
vice interface (see Figure 4). For instance, the vender-
neutral methods on () and off () are implemented by
the vendor-specific APl setPower () of TV.B. As for
changeVolume (), the parameter value is also adapted for
setVolume () API of Tv_B, based on its semantics dis-
cussed in Section 3.3.2.

The proposed framework is able to accept any appliance
of any vendor, as long as the provider can prepare an appro-
priate adapter for the appliance. Thus, Requirement R1 is
satisfied.

3.4.3 Dynamic Proxy

The dynamic proxy performs the dynamic binding of the
standard service and the appliance API. When the standard
service is invoked, the service creates the dynamic proxy for
the target appliance, based on the binding definition. When
a method of the standard service is executed, the proxy first
interprets the appropriate service adapter, and then executes
the appliance APIs according to the logic described in the
adapter.

The dynamic proxy is created during runtime based on
the binding definition. Hence, even if any appliance in
the HNS is replaced, neither the HNS applications or stan-
dard services require re-construction or re-deployment. All
what we need is just to update the binding definition. This
achieves Requirement R2.

HMSARplications

TvClient

TvSenice || BindingDefinition || Prumacmul

TvAdanter B TvAPI B

30nQ

D1 lookup T

5| ccoreatess

|

|

| — I
o __Tvew_ ______

3.1 sinterpret
1.2: setPowerdrue)

TVClient :
|
|

Standard Services ‘v Adaplers :

BindingDefinition ==interfaces= :
I — TVServicelr |

- !

Iooks up ? ZE‘ TvAdanter_A 1

,,,,, ——— h
|]

TVSerd ' TvAdapter _C H

envice
~ I | I]
N i
E]
uges :
N v \
* 1
N i
ProxyFactory ~ TProxy [~ 7 o

E——— createsd * 1 | interprets B+ | Tvadapter_B
Appliance APls BincjngDefinttion i"““'k‘?f"

TVAPLA S
— L
 nvapi_c TVAPILB I

|
|

(a) class diagram

1.2: setPower(fale)

(b) sequence diagram

Figure 7. UML diagrams for proposed method

3.5. Design of Framework

Figure 7 depicts a UML class diagram and a sequence
diagram for the proposed framework, where TV B is dy-
namically bound to TvService. From the class di-
agram in Figure 7(a), it can be seen how TVClient
of the HNS application executes the appliance API
TVAPI B, through a standard service TvService. The
relation between TVService and TVAPI B is defined by
BindingDefinition. Also, the proxy TVProxy inter-
prets the service adapter TVAdapter_B.

The sequence diagram in Figure 7(b) shows how
the components communicate with each other. It is
seen that the invocation of on() (or off()) is dy-
namically translated to TVAPI B.setPower (true) (or
TVAPI B.setPower (false), respectively).

4. Verbena: Platform for Multi-Vendor HNS

Based on the proposed method, we have implemented a
HNS platform, called Verbena.

4.1. Implementation

Technologies used for implementing the system compo-
nents are summarized as follows:

Java J2SE 5.0

JavaScript

Mozilla Rhino 1.6 R7
Apache Axis 1.3 Web service

Standard service:
Service adapter:
Dynamic proxy:
Service platform:

What specifically interesting in Verbena is that we
adopted Javascript for describing the service adapters. The

280

TVService = new function() {
// Logic implementing TVService.on()
this.on = function()
// Invoking appliance API for TV _B.
var ret = new Packages.TV_B() .setPower (true) ;
// Translating return value.

if (ret == true) {
return new Packages.java.lang.Integer (0);
} else {

return new Packages.java.lang.Integer (1) ;

}
Vi

Figure 8. Adapter for Tv_B in JavaScript

expressive power of JavaScript may help not only describe
the invocation of the appliance APIs, but also construct
sophisticated logic to improve the quality and reliability
of the adapter. This contributes to covering a wide range
of multi-vendor appliances, as stated in Requirement R1.
Each adapter is interpreted by the dynamic proxy with a
JavaScript engine, Rhino [12] during runtime. Figure 8
shows an example adapter, which binds TvService to the
appliance API of Tv_B (see also Figure 6).

To derive the vendor-neutral service interfaces for Ver-
bena, we have investigated various appliance products avail-
able in the market. Currently, Verbena has standard ser-
vices consisting 17 classes of appliances, including TV, air-
conditioner, fan, ventilator, air-cleaner, blind, curtain, sound
system, DVD/HDD recorder, light, gas valve, door, emer-
gency switch, fire alarm, telephone, fax, TV telephone. To
maximize the programmatic interoperability, we have de-
ployed the standard services as Web services with Apache
Axis.

4.2. Deploying Verbena in NAIST-HNS

We have then deployed Verbena in NAIST-HNS [13][14],
which is the existing HNS developed in our previous work.

The NAIST-HNS consists of legacy appliances with
the conventional infra-red controls, where the infra-red
operations are aggregated within coarse-grained and self-
contained services. Then, these services are exhibited as
Web services, which adapts the legacy appliances as net-
worked appliances. However in the previous version, the
services were statically coupled with the legacy appliances.
Therefore, it was not easy to replacing every appliance with
another, without reconstructing the service components.

We introduced Verbena so that it dynamically binds the
standard services with the legacy appliances. We then re-
vised all the applications and services in the NAIST-HNS
so as to use standard services of Verbena. As a result, the
NAIST-HNS is now able to handle not only legacy appli-
ances, but also multi-vendor and multi-protocol appliances.

4.3. Experimental Evaluation

We have conducted an experiment to demonstrate the dy-
namic service binding mechanism of Verbena. We imple-
mented a new light API operating with UPnP [7][19]. The
scenario of the first experiment is that we replace a light in
the NAIST-HNS (infra-red control) by the new one (UPnP),
during the execution of DVD Theater Service. It was seen
that the DVD Theater Service first used the old light, and
then switched to the new one as the binding definition of the
light service was updated. No reconstruction of the DVD
Theater Service or no re-deployment of the light service
were needed, which successfully achieved Requirement R2.

Next, we conducted another experiment to evaluate the
overhead posed by Verbena. Running the same HNS ap-
plications under the original NAIST-HNS and the one with
Verbena, we compared the response time. The exper-
iment was performed on a PC with Core Solo U1400,
1.5GB memory, Windows XP. Table 3 summarizes the re-
sult, showing the average values of 10 trials. From the re-
sult, it can be seen that some overhead is posed by the pro-
posed dynamic binding mechanism. However, we consider
the overhead sufficiently small for general use of the HNS.

S. Discussion
5.1. Advantage of Proposed Method

The proposed method introduces the standard services
designed extensively with the vendor-neutral service inter-
faces and dynamic service binding. As discussed in Section
3, Requirements R1, R2 and R3 have been well achieved.

281

Table 3. Response time of HNS applications

HNS Applications LeaveHome DVDTheater AirCleaning

of appliance APIs executed 5 5 2

NAIST-HNS: Static Binding [ms] 9,709 17,369 6,659
Verbena: Dynamic Binding [ms] 9916 17,522 6,709
Difference [ms] 207 153 50
Relative Overhead 2.1% 0.8% 0.7%

Using the proposed method, the service provider can de-
velop and distribute common applications for various com-
binations of multi-vendor appliances. This significantly im-
proves the productivity of new services. The point is that the
way of using appliances is not very different among users,
although favorite appliance vendors vary significantly. In
the proposed framework, the responsibilities for the HNS
can be distributed reasonably for different stakeholders, as
shown in Table 1. We consider it important to reduce the
complexity and improve the modularity of the HNS compo-
nents.

The basic idea of the proposed method is not limited
within the HNS domain only, but can be applied well to gen-
eral service-oriented and component-based systems [17].
For instance, let us consider a service mash-up for buying
a CD: (1) the user first searches the information of the CD
with a search engine, (2) the user then orders the CD to an
online store, (3) the user finally asks a credit card company
to perform the payment transaction. The problem is that we
want to allow every user to choose a favorite combination
of the search engine, the online store, and the credit card
company. The problem can be achieved using the proposed
method, by dynamically binding the standard service and
the concrete service chosen by the user. Theoretically, the
proposed method can also be used to construct enterprise
system with multi-vendor service components. We will in-
vestigate the feasibility in our future work.

5.2. Limitation

To cover as many vendors as possible, the proposed
method discards the vendor-specific features in deriving ser-
vice interfaces (see Section 3.3.1), which would be a limita-
tion. However, this is an inevitable trade-off between gener-
ality and specialty of the appliance features. If one wants to
use such vendor-specific features in the multi-vendor HNS,
a possible solution is to prepare a method that can invoke
any appliance API directly, for given API name and param-
eters using reflection. The method signature is like:

Object invokeAPI (String name, Object [] params);

However, using such methods instead of vender-neutral
ones significantly decreases the portability of the HNS ap-
plication, which should be well considered.

5.3. Related Work

It is known that the OSGi framework provides the
dynamicity for objects including smart home appliances
[1][16]. However, this dynamicity is just to allow the ob-
ject to be dynamically loaded and unloaded to the system.
It does not deal with dynamic binding nor adaptation of het-
erogeneous APIs.

It seems that the proposed method takes the adapter pat-
tern [4] to bridge the interface gap between the standard
service and the appliance APIs. However, our method de-
termines the target adapter during runtime, which enables
to handle even unknown adaptees (i.e., appliances).

The idea regarding a concrete appliance as an abstract
service is similar to the concept of the Service Component
Architecture (SCA) [15]. However, there exist no applica-
tion of SCA to the multi-vendor HNS, as far as we know.

6. Conclusion

We have proposed a method that constructs the HNS
with multi-vendor appliances. Exploiting the vendor-
neutral service interface and the dynamic service bind-
ing mechanism, the proposed method allows the service
provider to develop HNS applications within the multi-
vendor HNS. Based on the proposed method, we have im-
plemented a platform called Verbena. We also have shown
its effectiveness through experiments.

As a future work, we are currently investigating the fea-
sibility of the proposed method to multi-vendor enterprise
systems.

Acknowledgment: This research was partially supported
by the Ministry of Education, Science, Sports and Cul-
ture, Grant-in-Aid for Young Scientists (B) (No. 18700062)
and Scientific Research (B) (No. 17300007), by JSPS and
MAE under the Japan-France Integrated Action Program
(SAKURA), and by Oki Electric Industry Co., Ltd.

References

[1] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier,
C. Marin, “A Dynamic-SOA Home Control Gateway,”
Proc. of Int’l Conf. on Service Computing (SCC’06),
pp-18-22, Sep. 2006.

[2] Digital Living Network Alliance, http://www.dIna.org
[3] ECHONET Consortium, http://www.echonet.gr.jp/

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “De-
sign Pattern: Elements of Reusable Object-Oriented
Software,” Addison-Wesley Professional, 1994.

282

[5] Hitachi Home & Life Solutions inc., “HORASO Net-
work Service”, http://ns.horaso.com/index.html

[6] M. Kolberg, E. H. Magill, and M. Wilson, “Compati-
bility Issues between Services Supporting Networked
Appliances”, IEEE Communications Magazine, vol.
41, no. 11, pp. 136-147, Nov 2003.

S. Konno, “CyberLink for Java”,
http://www.cybergarage.org/net/upnp/java/

G. Lewis, E. Morris, L. O’Brien, D. Smith, and L.
Wrage “SMART: The Service-Oriented Migration and
Reuse Technique”, Technical Note CMU/SEI-2005-
TN-029, Software Engineering Institute, Sep. 2005.

[9] S. W. Loke, “Service-Oriented Device Echology
Workflows”, Proc. of Ist Int’l Conf. on Service-
Oriented Computing (ICSOC2003), LNCS2910,

Pp.559-574, Dec. 2003.

[10] Matsushita Electric Industrial Co., Ltd., “Kurashi

Net”, http://national.jp/appliance/product/kurashi-net/

[11] Matsushita Electric Works, Ltd.,
http://biz.national.jp/Ebox/kahs/index.html

“Lifinity”,

[12] Mozilla Foundation, “Rhino: JavaScript for Java”,
http://www.mozilla.org/rhino/

[13] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, K.
Matsumoto, “Adapting Legacy Home Appliances to
Home Network Systems Using Web Services,” Proc.
of Int’l Conf. on Web Services (ICWS 2006), pp.849-
858, Sep. 2006.

[14] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, K.
Matsumoto, “Constructing Home Network Systems
and Integrated Services Using Legacy Home Appli-
ances and Web Services,” International Journal of Web
Services Research, Vol.5, No.l, pp.82-98, January

2008.

[15] Open SOA Collaboration, “Service Component Ar-
chitecture” - http://www.osoa.org/display/Main/Serv

ice+Component+ Architecture+Home

[16] OSGi Alliance - http://www.osgi.org/

[17] M. P. Papazoglou, D. Georgakopoulos, “Service-

Oriented Computing”, Communications of the ACM,
Vol. 46, No.10, pp.25-28, 2003.

[18] TOSHIBA, “Toshiba home network — Feminity”,
http://www3.toshiba.co.jp/feminity/feminity _eng/

[19] UPnP Forum - http://www.upnp.org/

